Deskriptive Statistik 2

Statistik: Übungen

Author

Prof. Dr. Armin Eichinger

Published

20.10.2023

Wir verwenden wieder den Datensatz “Erstis”, den Luhmann (2020)1 für eine Kohorte Studierender im ersten Semester erhoben hat (vgl. letzte Übung). Laden Sie den Datensatz. Sie finden ihn hier zum Download (rechter Mausklick auf den Link → Link speichern unter….).

Falls Sie es brauchen, finden Sie hier das Codebook für den Datensatz.

1 Aufgabe

Ermitteln Sie das durchschnittliche Alter, in dem die Studierenden ihre Abiturprüfung abgelegt haben.

Diese Daten liegen nicht direkt vor. Wir müssen die Information erst erzeugen. Dazu verwenden wir das Jahr der Abiprüfung und das Geburtsjahr.

  1. Ziehen Sie das Geburtsjahr vom Abijahr ab. Verwenden Sie die Spalten des Datensatzes (Dollarzeichen!). Weisen Sie das Ergebnis der neuen Variablen alter_abi zu.

    Machen wir uns zuerst klar, welche Werte wir im Ergebnis grob erwarten: Es sollten ganze Zahlen im zweistelligen Bereich sein. Da wir in beiden Spalten fehlende Werte haben, die mit “-9” codiert sind, können hier verschiedene (z. T. komische) Fälle auftreten:
  • “gebjahr” fehlt, “abi” fehlt: 0 [=(-9)-(-9)]
  • “gebjahr” fehlt, “abi” da: negative Werte
  • “gebjahr” da, “abi” fehlt: viel zu große Werte
  • “gebjahr” da, “abi” da: alles ok

    Wir können diese Fallunterschedung in der Funktion replace() (die wir schon kennen) unterbringen. Neu ist hier, dass der Parameter, der angibt, was ersetzt werden soll, auch ein komplexer logischer Ausdruck sein kann. Logische Ausdrücke haben einen Wahrheitswert; sind also wahr oder falsch. Wir verwenden hier den folgenden Ausdruck: (alter_abi < 10) | (alter_abi > 100). Der senkrechte Strich | steht für ein logisches ODER und bedeutet: Wenn der Ausdruck links vom Strich wahr ist und/oder der Ausdruck rechts vom Strich wahr ist, ist der gesamte Ausdruck wahr. Das heißt also, wenn alter_abi < 10 und/oder alter_abi > 10, dann soll der Wert durch NA ersetzt werden.

    Das Ergebnis wird sofort wieder der Variablen alter_abi zugewiesen.
alter_abi <- replace(alter_abi, (alter_abi < 10) | (alter_abi > 100) , NA)
  1. Lassen Sie sich zur Kontrolle den Inhalt von alter_abi ausgeben. Das Ergebnis sollte so aussehen:
  [1] 22 20 18 17 18 19 NA NA NA 20 19 20 20 20 20 NA NA 19 18 21 19 NA 18 20 13
 [26] 15 20 20 20 20 20 18 20 NA 20 18 19 19 19 19 19 20 19 20 18 21 20 20 27 19
 [51] 20 20 19 20 19 20 19 18 18 NA 20 20 20 NA NA 19 19 17 NA 20 20 20 NA 24 20
 [76] 19 19 22 20 20 19 21 20 17 35 20 NA 20 20 20 NA NA 20 22 19 19 20 19 NA 19
[101] 19 NA 18 19 20 18 19 22 26 23 NA 20 18 20 19 20 29 20 NA 20 20 19 19 19 19
[126] 20 19 19 24 19 20 19 21 19 21 20 19 20 20 22 22 20 19 24 20 20 19 20 20 19
[151] 30 19 19 19 20 22 19 19 20 19 18 22 NA NA NA 19 19 19 19 18 18 19 18 24 19
[176] 18 21 19 20 30 19 18 24 19 19 20 20 NA 19 24 19
  1. Verwenden Sie die table()-Funktion aus der letzten Übung, um eine Übersicht der über die Verteilung des Abi-Alters zu bekommen.
  1. Wie viele fehlende Werte (also NA-Werte) gibt es?

    Dazu verwenden wir die Funktion is.na(), die TRUE zurückgibt, wenn das Argument ein NA ist. Hinter den Kulissen wird dieses TRUE als 1 behandelt (FALSE entsprechend als 0). Die Funktion sum() bildet die Summe dieser Einsen.
sum(is.na(alter_abi))
[1] 23
  1. Wie viele nicht fehlende Werte gibt es?

    Dazu verwenden wir wieder die Funktion is.na(); diesmal in Kombination mit einem logischen NICHT: !. Hier werden nun alle Fälle summiert, die nicht fehlende Werte sind.
sum(!is.na(alter_abi))
[1] 168

2 Anhang

2.1 Standardnormalverteilung

Achtung: Tabelle hat zwei Hälften – oben negative unten positive z-Werte

-.00 -.01 -.02 -.03 -.04 -.05 -.06 -.07 -.08 -.09
0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
-0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
-0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
-0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
-0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
-0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
-0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
-0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
-0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
-0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
-1 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
-1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
-1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
-1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
-1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
-1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
-1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
-1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
-2 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
-2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
-2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
-2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
-2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
-2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
-2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
-2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
-2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
-3 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
.00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

2.2 Kritische Werte der t-Verteilung

df 0.01 0.025 0.05 0.10 0.25 0.5 0.75 0.90 0.95 0.975 0.99
1 -31.8205 -12.7062 -6.3138 -3.0777 -1.0000 0 1.0000 3.0777 6.3138 12.7062 31.8205
2 -6.9646 -4.3027 -2.9200 -1.8856 -0.8165 0 0.8165 1.8856 2.9200 4.3027 6.9646
3 -4.5407 -3.1824 -2.3534 -1.6377 -0.7649 0 0.7649 1.6377 2.3534 3.1824 4.5407
4 -3.7469 -2.7764 -2.1318 -1.5332 -0.7407 0 0.7407 1.5332 2.1318 2.7764 3.7469
5 -3.3649 -2.5706 -2.0150 -1.4759 -0.7267 0 0.7267 1.4759 2.0150 2.5706 3.3649
6 -3.1427 -2.4469 -1.9432 -1.4398 -0.7176 0 0.7176 1.4398 1.9432 2.4469 3.1427
7 -2.9980 -2.3646 -1.8946 -1.4149 -0.7111 0 0.7111 1.4149 1.8946 2.3646 2.9980
8 -2.8965 -2.3060 -1.8595 -1.3968 -0.7064 0 0.7064 1.3968 1.8595 2.3060 2.8965
9 -2.8214 -2.2622 -1.8331 -1.3830 -0.7027 0 0.7027 1.3830 1.8331 2.2622 2.8214
10 -2.7638 -2.2281 -1.8125 -1.3722 -0.6998 0 0.6998 1.3722 1.8125 2.2281 2.7638
11 -2.7181 -2.2010 -1.7959 -1.3634 -0.6974 0 0.6974 1.3634 1.7959 2.2010 2.7181
12 -2.6810 -2.1788 -1.7823 -1.3562 -0.6955 0 0.6955 1.3562 1.7823 2.1788 2.6810
13 -2.6503 -2.1604 -1.7709 -1.3502 -0.6938 0 0.6938 1.3502 1.7709 2.1604 2.6503
14 -2.6245 -2.1448 -1.7613 -1.3450 -0.6924 0 0.6924 1.3450 1.7613 2.1448 2.6245
15 -2.6025 -2.1314 -1.7531 -1.3406 -0.6912 0 0.6912 1.3406 1.7531 2.1314 2.6025
16 -2.5835 -2.1199 -1.7459 -1.3368 -0.6901 0 0.6901 1.3368 1.7459 2.1199 2.5835
17 -2.5669 -2.1098 -1.7396 -1.3334 -0.6892 0 0.6892 1.3334 1.7396 2.1098 2.5669
18 -2.5524 -2.1009 -1.7341 -1.3304 -0.6884 0 0.6884 1.3304 1.7341 2.1009 2.5524
19 -2.5395 -2.0930 -1.7291 -1.3277 -0.6876 0 0.6876 1.3277 1.7291 2.0930 2.5395
20 -2.5280 -2.0860 -1.7247 -1.3253 -0.6870 0 0.6870 1.3253 1.7247 2.0860 2.5280
21 -2.5176 -2.0796 -1.7207 -1.3232 -0.6864 0 0.6864 1.3232 1.7207 2.0796 2.5176
22 -2.5083 -2.0739 -1.7171 -1.3212 -0.6858 0 0.6858 1.3212 1.7171 2.0739 2.5083
23 -2.4999 -2.0687 -1.7139 -1.3195 -0.6853 0 0.6853 1.3195 1.7139 2.0687 2.4999
24 -2.4922 -2.0639 -1.7109 -1.3178 -0.6848 0 0.6848 1.3178 1.7109 2.0639 2.4922
25 -2.4851 -2.0595 -1.7081 -1.3163 -0.6844 0 0.6844 1.3163 1.7081 2.0595 2.4851
26 -2.4786 -2.0555 -1.7056 -1.3150 -0.6840 0 0.6840 1.3150 1.7056 2.0555 2.4786
27 -2.4727 -2.0518 -1.7033 -1.3137 -0.6837 0 0.6837 1.3137 1.7033 2.0518 2.4727
28 -2.4671 -2.0484 -1.7011 -1.3125 -0.6834 0 0.6834 1.3125 1.7011 2.0484 2.4671
29 -2.4620 -2.0452 -1.6991 -1.3114 -0.6830 0 0.6830 1.3114 1.6991 2.0452 2.4620
30 -2.4573 -2.0423 -1.6973 -1.3104 -0.6828 0 0.6828 1.3104 1.6973 2.0423 2.4573
31 -2.4528 -2.0395 -1.6955 -1.3095 -0.6825 0 0.6825 1.3095 1.6955 2.0395 2.4528
32 -2.4487 -2.0369 -1.6939 -1.3086 -0.6822 0 0.6822 1.3086 1.6939 2.0369 2.4487
33 -2.4448 -2.0345 -1.6924 -1.3077 -0.6820 0 0.6820 1.3077 1.6924 2.0345 2.4448
34 -2.4411 -2.0322 -1.6909 -1.3070 -0.6818 0 0.6818 1.3070 1.6909 2.0322 2.4411
35 -2.4377 -2.0301 -1.6896 -1.3062 -0.6816 0 0.6816 1.3062 1.6896 2.0301 2.4377
36 -2.4345 -2.0281 -1.6883 -1.3055 -0.6814 0 0.6814 1.3055 1.6883 2.0281 2.4345
37 -2.4314 -2.0262 -1.6871 -1.3049 -0.6812 0 0.6812 1.3049 1.6871 2.0262 2.4314
38 -2.4286 -2.0244 -1.6860 -1.3042 -0.6810 0 0.6810 1.3042 1.6860 2.0244 2.4286
39 -2.4258 -2.0227 -1.6849 -1.3036 -0.6808 0 0.6808 1.3036 1.6849 2.0227 2.4258
40 -2.4233 -2.0211 -1.6839 -1.3031 -0.6807 0 0.6807 1.3031 1.6839 2.0211 2.4233
41 -2.4208 -2.0195 -1.6829 -1.3025 -0.6805 0 0.6805 1.3025 1.6829 2.0195 2.4208
42 -2.4185 -2.0181 -1.6820 -1.3020 -0.6804 0 0.6804 1.3020 1.6820 2.0181 2.4185
43 -2.4163 -2.0167 -1.6811 -1.3016 -0.6802 0 0.6802 1.3016 1.6811 2.0167 2.4163
44 -2.4141 -2.0154 -1.6802 -1.3011 -0.6801 0 0.6801 1.3011 1.6802 2.0154 2.4141
45 -2.4121 -2.0141 -1.6794 -1.3006 -0.6800 0 0.6800 1.3006 1.6794 2.0141 2.4121
46 -2.4102 -2.0129 -1.6787 -1.3002 -0.6799 0 0.6799 1.3002 1.6787 2.0129 2.4102
47 -2.4083 -2.0117 -1.6779 -1.2998 -0.6797 0 0.6797 1.2998 1.6779 2.0117 2.4083
48 -2.4066 -2.0106 -1.6772 -1.2994 -0.6796 0 0.6796 1.2994 1.6772 2.0106 2.4066
49 -2.4049 -2.0096 -1.6766 -1.2991 -0.6795 0 0.6795 1.2991 1.6766 2.0096 2.4049
50 -2.4033 -2.0086 -1.6759 -1.2987 -0.6794 0 0.6794 1.2987 1.6759 2.0086 2.4033
51 -2.4017 -2.0076 -1.6753 -1.2984 -0.6793 0 0.6793 1.2984 1.6753 2.0076 2.4017
52 -2.4002 -2.0066 -1.6747 -1.2980 -0.6792 0 0.6792 1.2980 1.6747 2.0066 2.4002
53 -2.3988 -2.0057 -1.6741 -1.2977 -0.6791 0 0.6791 1.2977 1.6741 2.0057 2.3988
54 -2.3974 -2.0049 -1.6736 -1.2974 -0.6791 0 0.6791 1.2974 1.6736 2.0049 2.3974
55 -2.3961 -2.0040 -1.6730 -1.2971 -0.6790 0 0.6790 1.2971 1.6730 2.0040 2.3961
56 -2.3948 -2.0032 -1.6725 -1.2969 -0.6789 0 0.6789 1.2969 1.6725 2.0032 2.3948
57 -2.3936 -2.0025 -1.6720 -1.2966 -0.6788 0 0.6788 1.2966 1.6720 2.0025 2.3936
58 -2.3924 -2.0017 -1.6716 -1.2963 -0.6787 0 0.6787 1.2963 1.6716 2.0017 2.3924
59 -2.3912 -2.0010 -1.6711 -1.2961 -0.6787 0 0.6787 1.2961 1.6711 2.0010 2.3912
60 -2.3901 -2.0003 -1.6706 -1.2958 -0.6786 0 0.6786 1.2958 1.6706 2.0003 2.3901
61 -2.3890 -1.9996 -1.6702 -1.2956 -0.6785 0 0.6785 1.2956 1.6702 1.9996 2.3890
62 -2.3880 -1.9990 -1.6698 -1.2954 -0.6785 0 0.6785 1.2954 1.6698 1.9990 2.3880
63 -2.3870 -1.9983 -1.6694 -1.2951 -0.6784 0 0.6784 1.2951 1.6694 1.9983 2.3870
64 -2.3860 -1.9977 -1.6690 -1.2949 -0.6783 0 0.6783 1.2949 1.6690 1.9977 2.3860
65 -2.3851 -1.9971 -1.6686 -1.2947 -0.6783 0 0.6783 1.2947 1.6686 1.9971 2.3851
66 -2.3842 -1.9966 -1.6683 -1.2945 -0.6782 0 0.6782 1.2945 1.6683 1.9966 2.3842
67 -2.3833 -1.9960 -1.6679 -1.2943 -0.6782 0 0.6782 1.2943 1.6679 1.9960 2.3833
68 -2.3824 -1.9955 -1.6676 -1.2941 -0.6781 0 0.6781 1.2941 1.6676 1.9955 2.3824
69 -2.3816 -1.9949 -1.6672 -1.2939 -0.6781 0 0.6781 1.2939 1.6672 1.9949 2.3816
70 -2.3808 -1.9944 -1.6669 -1.2938 -0.6780 0 0.6780 1.2938 1.6669 1.9944 2.3808
71 -2.3800 -1.9939 -1.6666 -1.2936 -0.6780 0 0.6780 1.2936 1.6666 1.9939 2.3800
72 -2.3793 -1.9935 -1.6663 -1.2934 -0.6779 0 0.6779 1.2934 1.6663 1.9935 2.3793
73 -2.3785 -1.9930 -1.6660 -1.2933 -0.6779 0 0.6779 1.2933 1.6660 1.9930 2.3785
74 -2.3778 -1.9925 -1.6657 -1.2931 -0.6778 0 0.6778 1.2931 1.6657 1.9925 2.3778
75 -2.3771 -1.9921 -1.6654 -1.2929 -0.6778 0 0.6778 1.2929 1.6654 1.9921 2.3771
76 -2.3764 -1.9917 -1.6652 -1.2928 -0.6777 0 0.6777 1.2928 1.6652 1.9917 2.3764
77 -2.3758 -1.9913 -1.6649 -1.2926 -0.6777 0 0.6777 1.2926 1.6649 1.9913 2.3758
78 -2.3751 -1.9908 -1.6646 -1.2925 -0.6776 0 0.6776 1.2925 1.6646 1.9908 2.3751
79 -2.3745 -1.9905 -1.6644 -1.2924 -0.6776 0 0.6776 1.2924 1.6644 1.9905 2.3745
80 -2.3739 -1.9901 -1.6641 -1.2922 -0.6776 0 0.6776 1.2922 1.6641 1.9901 2.3739
81 -2.3733 -1.9897 -1.6639 -1.2921 -0.6775 0 0.6775 1.2921 1.6639 1.9897 2.3733
82 -2.3727 -1.9893 -1.6636 -1.2920 -0.6775 0 0.6775 1.2920 1.6636 1.9893 2.3727
83 -2.3721 -1.9890 -1.6634 -1.2918 -0.6775 0 0.6775 1.2918 1.6634 1.9890 2.3721
84 -2.3716 -1.9886 -1.6632 -1.2917 -0.6774 0 0.6774 1.2917 1.6632 1.9886 2.3716
85 -2.3710 -1.9883 -1.6630 -1.2916 -0.6774 0 0.6774 1.2916 1.6630 1.9883 2.3710
86 -2.3705 -1.9879 -1.6628 -1.2915 -0.6774 0 0.6774 1.2915 1.6628 1.9879 2.3705
87 -2.3700 -1.9876 -1.6626 -1.2914 -0.6773 0 0.6773 1.2914 1.6626 1.9876 2.3700
88 -2.3695 -1.9873 -1.6624 -1.2912 -0.6773 0 0.6773 1.2912 1.6624 1.9873 2.3695
89 -2.3690 -1.9870 -1.6622 -1.2911 -0.6773 0 0.6773 1.2911 1.6622 1.9870 2.3690
90 -2.3685 -1.9867 -1.6620 -1.2910 -0.6772 0 0.6772 1.2910 1.6620 1.9867 2.3685
91 -2.3680 -1.9864 -1.6618 -1.2909 -0.6772 0 0.6772 1.2909 1.6618 1.9864 2.3680
92 -2.3676 -1.9861 -1.6616 -1.2908 -0.6772 0 0.6772 1.2908 1.6616 1.9861 2.3676
93 -2.3671 -1.9858 -1.6614 -1.2907 -0.6771 0 0.6771 1.2907 1.6614 1.9858 2.3671
94 -2.3667 -1.9855 -1.6612 -1.2906 -0.6771 0 0.6771 1.2906 1.6612 1.9855 2.3667
95 -2.3662 -1.9853 -1.6611 -1.2905 -0.6771 0 0.6771 1.2905 1.6611 1.9853 2.3662
96 -2.3658 -1.9850 -1.6609 -1.2904 -0.6771 0 0.6771 1.2904 1.6609 1.9850 2.3658
97 -2.3654 -1.9847 -1.6607 -1.2903 -0.6770 0 0.6770 1.2903 1.6607 1.9847 2.3654
98 -2.3650 -1.9845 -1.6606 -1.2902 -0.6770 0 0.6770 1.2902 1.6606 1.9845 2.3650
99 -2.3646 -1.9842 -1.6604 -1.2902 -0.6770 0 0.6770 1.2902 1.6604 1.9842 2.3646
100 -2.3642 -1.9840 -1.6602 -1.2901 -0.6770 0 0.6770 1.2901 1.6602 1.9840 2.3642

Footnotes

  1. Luhmann, M. (2020). R für Einsteiger. Beltz.↩︎