Multiple Regressionsanalyse

Statistik: Übungen

Author
Affiliation

Prof. Dr. Armin Eichinger

TH Deggendorf

Published

18.02.2025

1 Aufgabe (Wiederholung: einfache Regressionsanalyse)

Vollziehen Sie unser PKW-Beispiel aus der Vorlesung nach.

Führen Sie dazu die folgenden Schritte durch:

  1. Lesen Sie die Daten ein (die Sie auch hier finden).
          PKW.Name Tueren Plaetze Laenge Gewicht Hubraum Leistung Vmax Beschl.
1  Mercedes CL 500      2       5    499    1865    4966      225  250     6.5
2 Mercedes CLK 200      2       5    457    1375    1998      100  208    11.0
3   Mercedes E 200      4       5    480    1510    1998      100  209     9.3
4   Mercedes S 320      4       5    504    1770    3199      165  240     8.2
5  Mercedes SL 280      2       2    447    1810    2799      150  232     9.7
6 Mercedes SLK 200      2       2    401    1364    1998      120  223     8.2
7   Merzedes A 140      5       5    358    1095    1397       60  170    12.9
  Airbags Verbrauch  Preis
1       4      12.5 155667
2       2       9.4  54673
3       6       9.3  53453
4       6      11.5 110664
5       2      11.4 117206
6       4       9.6  50863
7       2       7.1  25414
  1. Verwenden Sie im Folgenden die Leistung als Prädiktor (X) und den Verbrauch als Kriterium (Y).

  2. Zeichnen Sie die Werte in ein Streudiagramm. Legen Sie eine Regressionsgerade in die Punktewolke.

    • Verwenden Sie die Funktion lm(), um das Modell zu erzeugen. Der Parameter ist die Modellspezifikation in der Notation: AV ~ UV – bei mir sieht das beispielsweise so aus: lm(pkw_data$Vebrauch ~ pkw_data$Leistung). Weisen Sie das Ergebnis einer Variablen zu.
    • Verwenden Sie die Funktion plot(), der Sie als notwendige Parameter die beiden Variablen für die x- und y-Achse übergeben. Zudem sollten Sie das Digramm über die benannten Parameter main, xlab, ylab beschriften.
    • Verwenden Sie die Funktion abline(), um den Scatterplot um unser Modell zu ergänzen. Der erste Parameter ist unser Modell, der zweite eine Farbe (z. B. col='red')
    • Wie lautet unser Modell (also die Geradengleichung des roten Strichs)?
  3. Ermitteln Sie rechnerisch den totalen Mittelwert des Kriteriums und zeichnen Sie ihn in das Diagramm. Verwenden Sie wieder abline(). Geben Sie die folgenden benannten Parameter an: h als Mittelwert von y, col=... und lty=2

  4. a Ermitteln Sie das lineare Modell händisch (Verbrauch = b0 + b1 \(\cdot\) Leistung). Berücksichtigen Sie zur Berechnung der Parameter b0 und b1 die Formeln aus der Vorlesung.

    b Geben Sie zum Vergleich die Details des Modells aus, das Sie über lm() erstellt haben. Verwenden Sie dazu die Funktion summary(). Identifizieren Sie im Output die Modellgleichung, R², F-Wert, p-Wert und vergleichen Sie mit den Ergebnissen, die Sie unten gleich selbst erzeugen.

  5. Ergänzen Sie den Dataframe mit unseren Daten um die Modellvorhersagen. Ermitteln Sie rechnerisch die Quadratsummen QST, QSR und QSM. Verwenden Sie dazu die Funktion sumsq().

  6. Berechnen Sie den Determinationskoeffizient (= Bestimmtheitsmaß) R².

  7. Bestimmen Sie die mittleren Quadratsummen MQSR und MQSM.

  8. Berechnen Sie die Teststatistik F mit zugehörigem p-Wert.

  9. Kommentieren Sie, ob das Modell einen signifikanten Beitrag der Varianzaufklärung liefert. Mit anderen Worten: Ist die Steigung Ihrer Regressionsgeraden signifikant von null verschieden?

  10. Verwenden Sie die Funktion anova(), um eine ANOVA-Tabelle zu erzeugen. Übergeben Sie der Funktion die Modellvariable als Parameter. Vergleichen Sie die Tabellenwerte mit Ihren Ergebnissen.

2 Aufgabe: Erweiterung zur multiplen Regressionsanayse

Vollziehen Sie das PKW-Beispiel der Vorlesung nach. Verwenden Sie die Prädiktoren Leistung, Gewicht und Hubraum, um das Kriterium Verbrauch zu modellieren.

Führen Sie dazu die folgenden Schritte durch:

  1. Lesen Sie die Daten ein (die Sie auch hier finden).

  2. Formulieren Sie das lineare Modell: Verbrauch in Abhängigkeit von Leistung, Gewicht und Hubraum (lm(...))

  3. Geben Sie die Modellzusammenfassung aus (summary(...))

  4. Erstellen Sie die ANOVA-Tabelle (anova(...))

  5. Extrahieren Sie aus der Modellzusammenfassung die Regressionsparameter b0, b1, b2, b3 und weisen Sie sie geeigneten Variablen zu. Verwenden Sie die $-Schreibweise. Ich greife beispielsweise folgendermaßen auf b0 zu: unser_modell_multi$coefficients[1]. Für den Parameter b3 steht in den eckigen Klammern entsprechend eine 4.

  6. Ergänzen Sie den Dataframe mit unseren Daten um die Modellvorhersagen. Ermitteln Sie rechnerisch die Quadratsummen QST, QSR und QSM. Verwenden Sie dazu die Funktion sumsq().

    1. Berechnen Sie den Determinationskoeffizient (= Bestimmtheitsmaß) R².

    2. Bestimmen Sie den Multiplen Korrelationskoeffizient (also die Korrelation der Modellvorhersagen mit den tatsächlichen Verbräuchen).

  7. Bestimmen Sie die mittleren Quadratsummen MQSR und MQSM.

  8. Berechnen Sie die Teststatistik F mit zugehörigem p-Wert.

  9. Kommentieren Sie, ob das Modell einen signifikanten Beitrag der Varianzaufklärung liefert.

  10. Bestimmen Sie die standardisierten Regressionskoeffizienten (\(\beta_i\)). Verwenden Sie dazu die Funktion lm.beta(), der Sie als Parameter unser lineares Modell aus dem Aufruf von lm() übergeben. Um die Funktion nutzen zu können, benötigen Sie die gleichnamige Library lm.beta – wie üblich: installieren und über library() einbinden. Geben Sie das Ergebnis über summary() aus.

  11. Erstellen Sie eine Korrelationsmatrix für unsere Prädiktoren plus Kriterium. Dazu geben wir der Funktion cor() als Parameter den DataFrame und über subset() und c()eine Teilmenge der Spalten. Bei mir sieht der Aufruf folgendermaßen aus: cor(subset(pkw_data,select=c(Verbrauch, Gewicht, Hubraum, Leistung)))

  12. Berechnen Sie den Variance Inflation Factor (VIF) mit Hilfe der Funktion vif() (dazu brauchen Sie die Library car; also: installieren und über library() einbinden). Als Parameter erwartet die Funktion das Ergebnis des Aufrufs von lm(). Nehmen Sie Stellung zur Multikollinearität. Beziehen Sie die Korrelationsmatrix in Ihre Überlegung ein.

Anhang

SNV

Achtung: Die Tabelle hat zwei Hälften – oben negative unten positive z-Werte

-.00 -.01 -.02 -.03 -.04 -.05 -.06 -.07 -.08 -.09
0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
-0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
-0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
-0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
-0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
-0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
-0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
-0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
-0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
-0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
-1 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
-1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
-1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
-1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
-1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
-1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
-1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
-1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
-2 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
-2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
-2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
-2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
-2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
-2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
-2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
-2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
-2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
-3 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
.00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

t-Verteilung

df 0.01 0.025 0.05 0.10 0.25 0.5 0.75 0.90 0.95 0.975 0.99
1 -31.8205 -12.7062 -6.3138 -3.0777 -1.0000 0 1.0000 3.0777 6.3138 12.7062 31.8205
2 -6.9646 -4.3027 -2.9200 -1.8856 -0.8165 0 0.8165 1.8856 2.9200 4.3027 6.9646
3 -4.5407 -3.1824 -2.3534 -1.6377 -0.7649 0 0.7649 1.6377 2.3534 3.1824 4.5407
4 -3.7469 -2.7764 -2.1318 -1.5332 -0.7407 0 0.7407 1.5332 2.1318 2.7764 3.7469
5 -3.3649 -2.5706 -2.0150 -1.4759 -0.7267 0 0.7267 1.4759 2.0150 2.5706 3.3649
6 -3.1427 -2.4469 -1.9432 -1.4398 -0.7176 0 0.7176 1.4398 1.9432 2.4469 3.1427
7 -2.9980 -2.3646 -1.8946 -1.4149 -0.7111 0 0.7111 1.4149 1.8946 2.3646 2.9980
8 -2.8965 -2.3060 -1.8595 -1.3968 -0.7064 0 0.7064 1.3968 1.8595 2.3060 2.8965
9 -2.8214 -2.2622 -1.8331 -1.3830 -0.7027 0 0.7027 1.3830 1.8331 2.2622 2.8214
10 -2.7638 -2.2281 -1.8125 -1.3722 -0.6998 0 0.6998 1.3722 1.8125 2.2281 2.7638
11 -2.7181 -2.2010 -1.7959 -1.3634 -0.6974 0 0.6974 1.3634 1.7959 2.2010 2.7181
12 -2.6810 -2.1788 -1.7823 -1.3562 -0.6955 0 0.6955 1.3562 1.7823 2.1788 2.6810
13 -2.6503 -2.1604 -1.7709 -1.3502 -0.6938 0 0.6938 1.3502 1.7709 2.1604 2.6503
14 -2.6245 -2.1448 -1.7613 -1.3450 -0.6924 0 0.6924 1.3450 1.7613 2.1448 2.6245
15 -2.6025 -2.1314 -1.7531 -1.3406 -0.6912 0 0.6912 1.3406 1.7531 2.1314 2.6025
16 -2.5835 -2.1199 -1.7459 -1.3368 -0.6901 0 0.6901 1.3368 1.7459 2.1199 2.5835
17 -2.5669 -2.1098 -1.7396 -1.3334 -0.6892 0 0.6892 1.3334 1.7396 2.1098 2.5669
18 -2.5524 -2.1009 -1.7341 -1.3304 -0.6884 0 0.6884 1.3304 1.7341 2.1009 2.5524
19 -2.5395 -2.0930 -1.7291 -1.3277 -0.6876 0 0.6876 1.3277 1.7291 2.0930 2.5395
20 -2.5280 -2.0860 -1.7247 -1.3253 -0.6870 0 0.6870 1.3253 1.7247 2.0860 2.5280
21 -2.5176 -2.0796 -1.7207 -1.3232 -0.6864 0 0.6864 1.3232 1.7207 2.0796 2.5176
22 -2.5083 -2.0739 -1.7171 -1.3212 -0.6858 0 0.6858 1.3212 1.7171 2.0739 2.5083
23 -2.4999 -2.0687 -1.7139 -1.3195 -0.6853 0 0.6853 1.3195 1.7139 2.0687 2.4999
24 -2.4922 -2.0639 -1.7109 -1.3178 -0.6848 0 0.6848 1.3178 1.7109 2.0639 2.4922
25 -2.4851 -2.0595 -1.7081 -1.3163 -0.6844 0 0.6844 1.3163 1.7081 2.0595 2.4851
26 -2.4786 -2.0555 -1.7056 -1.3150 -0.6840 0 0.6840 1.3150 1.7056 2.0555 2.4786
27 -2.4727 -2.0518 -1.7033 -1.3137 -0.6837 0 0.6837 1.3137 1.7033 2.0518 2.4727
28 -2.4671 -2.0484 -1.7011 -1.3125 -0.6834 0 0.6834 1.3125 1.7011 2.0484 2.4671
29 -2.4620 -2.0452 -1.6991 -1.3114 -0.6830 0 0.6830 1.3114 1.6991 2.0452 2.4620
30 -2.4573 -2.0423 -1.6973 -1.3104 -0.6828 0 0.6828 1.3104 1.6973 2.0423 2.4573
31 -2.4528 -2.0395 -1.6955 -1.3095 -0.6825 0 0.6825 1.3095 1.6955 2.0395 2.4528
32 -2.4487 -2.0369 -1.6939 -1.3086 -0.6822 0 0.6822 1.3086 1.6939 2.0369 2.4487
33 -2.4448 -2.0345 -1.6924 -1.3077 -0.6820 0 0.6820 1.3077 1.6924 2.0345 2.4448
34 -2.4411 -2.0322 -1.6909 -1.3070 -0.6818 0 0.6818 1.3070 1.6909 2.0322 2.4411
35 -2.4377 -2.0301 -1.6896 -1.3062 -0.6816 0 0.6816 1.3062 1.6896 2.0301 2.4377
36 -2.4345 -2.0281 -1.6883 -1.3055 -0.6814 0 0.6814 1.3055 1.6883 2.0281 2.4345
37 -2.4314 -2.0262 -1.6871 -1.3049 -0.6812 0 0.6812 1.3049 1.6871 2.0262 2.4314
38 -2.4286 -2.0244 -1.6860 -1.3042 -0.6810 0 0.6810 1.3042 1.6860 2.0244 2.4286
39 -2.4258 -2.0227 -1.6849 -1.3036 -0.6808 0 0.6808 1.3036 1.6849 2.0227 2.4258
40 -2.4233 -2.0211 -1.6839 -1.3031 -0.6807 0 0.6807 1.3031 1.6839 2.0211 2.4233
41 -2.4208 -2.0195 -1.6829 -1.3025 -0.6805 0 0.6805 1.3025 1.6829 2.0195 2.4208
42 -2.4185 -2.0181 -1.6820 -1.3020 -0.6804 0 0.6804 1.3020 1.6820 2.0181 2.4185
43 -2.4163 -2.0167 -1.6811 -1.3016 -0.6802 0 0.6802 1.3016 1.6811 2.0167 2.4163
44 -2.4141 -2.0154 -1.6802 -1.3011 -0.6801 0 0.6801 1.3011 1.6802 2.0154 2.4141
45 -2.4121 -2.0141 -1.6794 -1.3006 -0.6800 0 0.6800 1.3006 1.6794 2.0141 2.4121
46 -2.4102 -2.0129 -1.6787 -1.3002 -0.6799 0 0.6799 1.3002 1.6787 2.0129 2.4102
47 -2.4083 -2.0117 -1.6779 -1.2998 -0.6797 0 0.6797 1.2998 1.6779 2.0117 2.4083
48 -2.4066 -2.0106 -1.6772 -1.2994 -0.6796 0 0.6796 1.2994 1.6772 2.0106 2.4066
49 -2.4049 -2.0096 -1.6766 -1.2991 -0.6795 0 0.6795 1.2991 1.6766 2.0096 2.4049
50 -2.4033 -2.0086 -1.6759 -1.2987 -0.6794 0 0.6794 1.2987 1.6759 2.0086 2.4033
51 -2.4017 -2.0076 -1.6753 -1.2984 -0.6793 0 0.6793 1.2984 1.6753 2.0076 2.4017
52 -2.4002 -2.0066 -1.6747 -1.2980 -0.6792 0 0.6792 1.2980 1.6747 2.0066 2.4002
53 -2.3988 -2.0057 -1.6741 -1.2977 -0.6791 0 0.6791 1.2977 1.6741 2.0057 2.3988
54 -2.3974 -2.0049 -1.6736 -1.2974 -0.6791 0 0.6791 1.2974 1.6736 2.0049 2.3974
55 -2.3961 -2.0040 -1.6730 -1.2971 -0.6790 0 0.6790 1.2971 1.6730 2.0040 2.3961
56 -2.3948 -2.0032 -1.6725 -1.2969 -0.6789 0 0.6789 1.2969 1.6725 2.0032 2.3948
57 -2.3936 -2.0025 -1.6720 -1.2966 -0.6788 0 0.6788 1.2966 1.6720 2.0025 2.3936
58 -2.3924 -2.0017 -1.6716 -1.2963 -0.6787 0 0.6787 1.2963 1.6716 2.0017 2.3924
59 -2.3912 -2.0010 -1.6711 -1.2961 -0.6787 0 0.6787 1.2961 1.6711 2.0010 2.3912
60 -2.3901 -2.0003 -1.6706 -1.2958 -0.6786 0 0.6786 1.2958 1.6706 2.0003 2.3901
61 -2.3890 -1.9996 -1.6702 -1.2956 -0.6785 0 0.6785 1.2956 1.6702 1.9996 2.3890
62 -2.3880 -1.9990 -1.6698 -1.2954 -0.6785 0 0.6785 1.2954 1.6698 1.9990 2.3880
63 -2.3870 -1.9983 -1.6694 -1.2951 -0.6784 0 0.6784 1.2951 1.6694 1.9983 2.3870
64 -2.3860 -1.9977 -1.6690 -1.2949 -0.6783 0 0.6783 1.2949 1.6690 1.9977 2.3860
65 -2.3851 -1.9971 -1.6686 -1.2947 -0.6783 0 0.6783 1.2947 1.6686 1.9971 2.3851
66 -2.3842 -1.9966 -1.6683 -1.2945 -0.6782 0 0.6782 1.2945 1.6683 1.9966 2.3842
67 -2.3833 -1.9960 -1.6679 -1.2943 -0.6782 0 0.6782 1.2943 1.6679 1.9960 2.3833
68 -2.3824 -1.9955 -1.6676 -1.2941 -0.6781 0 0.6781 1.2941 1.6676 1.9955 2.3824
69 -2.3816 -1.9949 -1.6672 -1.2939 -0.6781 0 0.6781 1.2939 1.6672 1.9949 2.3816
70 -2.3808 -1.9944 -1.6669 -1.2938 -0.6780 0 0.6780 1.2938 1.6669 1.9944 2.3808
71 -2.3800 -1.9939 -1.6666 -1.2936 -0.6780 0 0.6780 1.2936 1.6666 1.9939 2.3800
72 -2.3793 -1.9935 -1.6663 -1.2934 -0.6779 0 0.6779 1.2934 1.6663 1.9935 2.3793
73 -2.3785 -1.9930 -1.6660 -1.2933 -0.6779 0 0.6779 1.2933 1.6660 1.9930 2.3785
74 -2.3778 -1.9925 -1.6657 -1.2931 -0.6778 0 0.6778 1.2931 1.6657 1.9925 2.3778
75 -2.3771 -1.9921 -1.6654 -1.2929 -0.6778 0 0.6778 1.2929 1.6654 1.9921 2.3771
76 -2.3764 -1.9917 -1.6652 -1.2928 -0.6777 0 0.6777 1.2928 1.6652 1.9917 2.3764
77 -2.3758 -1.9913 -1.6649 -1.2926 -0.6777 0 0.6777 1.2926 1.6649 1.9913 2.3758
78 -2.3751 -1.9908 -1.6646 -1.2925 -0.6776 0 0.6776 1.2925 1.6646 1.9908 2.3751
79 -2.3745 -1.9905 -1.6644 -1.2924 -0.6776 0 0.6776 1.2924 1.6644 1.9905 2.3745
80 -2.3739 -1.9901 -1.6641 -1.2922 -0.6776 0 0.6776 1.2922 1.6641 1.9901 2.3739
81 -2.3733 -1.9897 -1.6639 -1.2921 -0.6775 0 0.6775 1.2921 1.6639 1.9897 2.3733
82 -2.3727 -1.9893 -1.6636 -1.2920 -0.6775 0 0.6775 1.2920 1.6636 1.9893 2.3727
83 -2.3721 -1.9890 -1.6634 -1.2918 -0.6775 0 0.6775 1.2918 1.6634 1.9890 2.3721
84 -2.3716 -1.9886 -1.6632 -1.2917 -0.6774 0 0.6774 1.2917 1.6632 1.9886 2.3716
85 -2.3710 -1.9883 -1.6630 -1.2916 -0.6774 0 0.6774 1.2916 1.6630 1.9883 2.3710
86 -2.3705 -1.9879 -1.6628 -1.2915 -0.6774 0 0.6774 1.2915 1.6628 1.9879 2.3705
87 -2.3700 -1.9876 -1.6626 -1.2914 -0.6773 0 0.6773 1.2914 1.6626 1.9876 2.3700
88 -2.3695 -1.9873 -1.6624 -1.2912 -0.6773 0 0.6773 1.2912 1.6624 1.9873 2.3695
89 -2.3690 -1.9870 -1.6622 -1.2911 -0.6773 0 0.6773 1.2911 1.6622 1.9870 2.3690
90 -2.3685 -1.9867 -1.6620 -1.2910 -0.6772 0 0.6772 1.2910 1.6620 1.9867 2.3685
91 -2.3680 -1.9864 -1.6618 -1.2909 -0.6772 0 0.6772 1.2909 1.6618 1.9864 2.3680
92 -2.3676 -1.9861 -1.6616 -1.2908 -0.6772 0 0.6772 1.2908 1.6616 1.9861 2.3676
93 -2.3671 -1.9858 -1.6614 -1.2907 -0.6771 0 0.6771 1.2907 1.6614 1.9858 2.3671
94 -2.3667 -1.9855 -1.6612 -1.2906 -0.6771 0 0.6771 1.2906 1.6612 1.9855 2.3667
95 -2.3662 -1.9853 -1.6611 -1.2905 -0.6771 0 0.6771 1.2905 1.6611 1.9853 2.3662
96 -2.3658 -1.9850 -1.6609 -1.2904 -0.6771 0 0.6771 1.2904 1.6609 1.9850 2.3658
97 -2.3654 -1.9847 -1.6607 -1.2903 -0.6770 0 0.6770 1.2903 1.6607 1.9847 2.3654
98 -2.3650 -1.9845 -1.6606 -1.2902 -0.6770 0 0.6770 1.2902 1.6606 1.9845 2.3650
99 -2.3646 -1.9842 -1.6604 -1.2902 -0.6770 0 0.6770 1.2902 1.6604 1.9842 2.3646
100 -2.3642 -1.9840 -1.6602 -1.2901 -0.6770 0 0.6770 1.2901 1.6602 1.9840 2.3642

F-Verteilung

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 40 50 100 Inf
1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88 242.98 243.91 244.69 245.36 245.95 246.46 246.92 247.32 247.69 248.01 248.31 248.58 248.83 249.05 249.26 249.45 249.63 249.80 249.95 250.10 251.14 251.77 253.04 254.31
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.40 19.41 19.42 19.42 19.43 19.43 19.44 19.44 19.44 19.45 19.45 19.45 19.45 19.45 19.46 19.46 19.46 19.46 19.46 19.46 19.47 19.48 19.49 19.50
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.76 8.74 8.73 8.71 8.70 8.69 8.68 8.67 8.67 8.66 8.65 8.65 8.64 8.64 8.63 8.63 8.63 8.62 8.62 8.62 8.59 8.58 8.55 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.94 5.91 5.89 5.87 5.86 5.84 5.83 5.82 5.81 5.80 5.79 5.79 5.78 5.77 5.77 5.76 5.76 5.75 5.75 5.75 5.72 5.70 5.66 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.70 4.68 4.66 4.64 4.62 4.60 4.59 4.58 4.57 4.56 4.55 4.54 4.53 4.53 4.52 4.52 4.51 4.50 4.50 4.50 4.46 4.44 4.41 4.36
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00 3.98 3.96 3.94 3.92 3.91 3.90 3.88 3.87 3.86 3.86 3.85 3.84 3.83 3.83 3.82 3.82 3.81 3.81 3.77 3.75 3.71 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.60 3.57 3.55 3.53 3.51 3.49 3.48 3.47 3.46 3.44 3.43 3.43 3.42 3.41 3.40 3.40 3.39 3.39 3.38 3.38 3.34 3.32 3.27 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.31 3.28 3.26 3.24 3.22 3.20 3.19 3.17 3.16 3.15 3.14 3.13 3.12 3.12 3.11 3.10 3.10 3.09 3.08 3.08 3.04 3.02 2.97 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.10 3.07 3.05 3.03 3.01 2.99 2.97 2.96 2.95 2.94 2.93 2.92 2.91 2.90 2.89 2.89 2.88 2.87 2.87 2.86 2.83 2.80 2.76 2.71
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.94 2.91 2.89 2.86 2.85 2.83 2.81 2.80 2.79 2.77 2.76 2.75 2.75 2.74 2.73 2.72 2.72 2.71 2.70 2.70 2.66 2.64 2.59 2.54
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.82 2.79 2.76 2.74 2.72 2.70 2.69 2.67 2.66 2.65 2.64 2.63 2.62 2.61 2.60 2.59 2.59 2.58 2.58 2.57 2.53 2.51 2.46 2.40
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.72 2.69 2.66 2.64 2.62 2.60 2.58 2.57 2.56 2.54 2.53 2.52 2.51 2.51 2.50 2.49 2.48 2.48 2.47 2.47 2.43 2.40 2.35 2.30
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.63 2.60 2.58 2.55 2.53 2.51 2.50 2.48 2.47 2.46 2.45 2.44 2.43 2.42 2.41 2.41 2.40 2.39 2.39 2.38 2.34 2.31 2.26 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.57 2.53 2.51 2.48 2.46 2.44 2.43 2.41 2.40 2.39 2.38 2.37 2.36 2.35 2.34 2.33 2.33 2.32 2.31 2.31 2.27 2.24 2.19 2.13
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.51 2.48 2.45 2.42 2.40 2.38 2.37 2.35 2.34 2.33 2.32 2.31 2.30 2.29 2.28 2.27 2.27 2.26 2.25 2.25 2.20 2.18 2.12 2.07
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.46 2.42 2.40 2.37 2.35 2.33 2.32 2.30 2.29 2.28 2.26 2.25 2.24 2.24 2.23 2.22 2.21 2.21 2.20 2.19 2.15 2.12 2.07 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.41 2.38 2.35 2.33 2.31 2.29 2.27 2.26 2.24 2.23 2.22 2.21 2.20 2.19 2.18 2.17 2.17 2.16 2.15 2.15 2.10 2.08 2.02 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.37 2.34 2.31 2.29 2.27 2.25 2.23 2.22 2.20 2.19 2.18 2.17 2.16 2.15 2.14 2.13 2.13 2.12 2.11 2.11 2.06 2.04 1.98 1.92
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.34 2.31 2.28 2.26 2.23 2.21 2.20 2.18 2.17 2.16 2.14 2.13 2.12 2.11 2.11 2.10 2.09 2.08 2.08 2.07 2.03 2.00 1.94 1.88
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.31 2.28 2.25 2.22 2.20 2.18 2.17 2.15 2.14 2.12 2.11 2.10 2.09 2.08 2.07 2.07 2.06 2.05 2.05 2.04 1.99 1.97 1.91 1.84
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.28 2.25 2.22 2.20 2.18 2.16 2.14 2.12 2.11 2.10 2.08 2.07 2.06 2.05 2.05 2.04 2.03 2.02 2.02 2.01 1.96 1.94 1.88 1.81
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.26 2.23 2.20 2.17 2.15 2.13 2.11 2.10 2.08 2.07 2.06 2.05 2.04 2.03 2.02 2.01 2.00 2.00 1.99 1.98 1.94 1.91 1.85 1.78
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.24 2.20 2.18 2.15 2.13 2.11 2.09 2.08 2.06 2.05 2.04 2.02 2.01 2.01 2.00 1.99 1.98 1.97 1.97 1.96 1.91 1.88 1.82 1.76
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.22 2.18 2.15 2.13 2.11 2.09 2.07 2.05 2.04 2.03 2.01 2.00 1.99 1.98 1.97 1.97 1.96 1.95 1.95 1.94 1.89 1.86 1.80 1.73
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.20 2.16 2.14 2.11 2.09 2.07 2.05 2.04 2.02 2.01 2.00 1.98 1.97 1.96 1.96 1.95 1.94 1.93 1.93 1.92 1.87 1.84 1.78 1.71
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.18 2.15 2.12 2.09 2.07 2.05 2.03 2.02 2.00 1.99 1.98 1.97 1.96 1.95 1.94 1.93 1.92 1.91 1.91 1.90 1.85 1.82 1.76 1.69
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.17 2.13 2.10 2.08 2.06 2.04 2.02 2.00 1.99 1.97 1.96 1.95 1.94 1.93 1.92 1.91 1.90 1.90 1.89 1.88 1.84 1.81 1.74 1.67
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.15 2.12 2.09 2.06 2.04 2.02 2.00 1.99 1.97 1.96 1.95 1.93 1.92 1.91 1.91 1.90 1.89 1.88 1.88 1.87 1.82 1.79 1.73 1.65
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.14 2.10 2.08 2.05 2.03 2.01 1.99 1.97 1.96 1.94 1.93 1.92 1.91 1.90 1.89 1.88 1.88 1.87 1.86 1.85 1.81 1.77 1.71 1.64
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.13 2.09 2.06 2.04 2.01 1.99 1.98 1.96 1.95 1.93 1.92 1.91 1.90 1.89 1.88 1.87 1.86 1.85 1.85 1.84 1.79 1.76 1.70 1.62
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.04 2.00 1.97 1.95 1.92 1.90 1.89 1.87 1.85 1.84 1.83 1.81 1.80 1.79 1.78 1.77 1.77 1.76 1.75 1.74 1.69 1.66 1.59 1.51
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.99 1.95 1.92 1.89 1.87 1.85 1.83 1.81 1.80 1.78 1.77 1.76 1.75 1.74 1.73 1.72 1.71 1.70 1.69 1.69 1.63 1.60 1.52 1.44
100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.89 1.85 1.82 1.79 1.77 1.75 1.73 1.71 1.69 1.68 1.66 1.65 1.64 1.63 1.62 1.61 1.60 1.59 1.58 1.57 1.52 1.48 1.39 1.28
Inf 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.79 1.75 1.72 1.69 1.67 1.64 1.62 1.60 1.59 1.57 1.56 1.54 1.53 1.52 1.51 1.50 1.49 1.48 1.47 1.46 1.39 1.35 1.24 1.00