ANOVA, einfaktoriell mit MW

Statistik: Übungen

Author
Affiliation

Prof. Dr. Armin Eichinger

TH Deggendorf

Published

20.02.2025

1 Aufgabe

Vollziehen Sie das Motorik-Beispiel aus der Vorlesung nach. Die (Daten finden Sie hier).

  1. Lesen Sie die Daten mit read.csv() ein und weisen Sie sie einer Variablen zu.

  2. Nach dem Einlesen liegen die Spalten VP und Zeitpunkt als Datentypen int und chr vor (int steht für Integer; also ganze Zahlen – chr steht für Character; also Buchstaben, Zeichen, Wörter, …). Das können Sie mit Hilfe der Funktion str() prüfen, der Sie den Dataframe als Parameter übergeben.

    Für die Varianzanalyse benötigen wir eigentlich für beide Spalten (VP und Zeitpunkt) den Datentyp Factor. Zeitpunkt ist vom Typ chr; dieser Datentyp wir von der Funktion aov() später automatisch als Faktor erkannt und so behandelt. Für VP müssen wir das selbst tun.

    Wir machen das mit Hilfe der Funktion as.factor(). Dieser Funktion geben Sie einfach die betroffene Spalte als Parameter (z. B. data_motorik$VP) und weisen das Ergebnis gleich wieder der betroffenen Spalte zu: data_motorik$VP <- ....

    Warum müssen wir die Spalte VP überhaupt umwandeln, wir brauchen sie doch gar nicht?! – Tatsächlich doch. Der Einfluss des Faktors VP wird berechnet, und dann verwendet, um die residuale Quadratsumme zu verringern. Das passiert hinter den Kulissen. Die Spalte muss dafür aber vom Typ chr oder Factor sein.

  3. Prüfen Sie mit Hilfe von str(), ob die Umwandlung funktioniert hat. Die beiden Spalten sollten nun den Datentyp Factor haben.

  4. Verwenden Sie die Funktion aov(), um eine ANOVA durchzuführen. Rufen Sie die Funktion mit den benannten Parametern formula und data auf.

    formula enthält eine Besonderheit: Wir müssen der Funktion mitteilen, dass es sich um eine ANOVA mit Messwiederholung handelt. Das tun wir mit der Formel-Ergänzung + ERROR(Spalte1/Spalte2); dabei enthält Spalte1 die ID der Merkmalsträger (bei uns also VP); Spalte2 enthält den Messwiederholungsfaktor (bei uns also Zeitpunkt). Der gesamte Aufruf sieht bei mir folgendermaßen aus:

    model_motorik <- aov(formula = Wiederholungen ~ Zeitpunkt + Error(VP/Zeitpunkt), data = data_motorik)

  5. Über die Funktion summary() können wir das Ergebnis des Aufrufs zusammenfassend darstellen. Die untere Hälfte der Ausgabe enthält die für uns relevante ANOVA-Tabelle.

Anhang

F-Verteilung

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 40 50 100 Inf
1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88 242.98 243.91 244.69 245.36 245.95 246.46 246.92 247.32 247.69 248.01 248.31 248.58 248.83 249.05 249.26 249.45 249.63 249.80 249.95 250.10 251.14 251.77 253.04 254.31
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.40 19.41 19.42 19.42 19.43 19.43 19.44 19.44 19.44 19.45 19.45 19.45 19.45 19.45 19.46 19.46 19.46 19.46 19.46 19.46 19.47 19.48 19.49 19.50
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.76 8.74 8.73 8.71 8.70 8.69 8.68 8.67 8.67 8.66 8.65 8.65 8.64 8.64 8.63 8.63 8.63 8.62 8.62 8.62 8.59 8.58 8.55 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.94 5.91 5.89 5.87 5.86 5.84 5.83 5.82 5.81 5.80 5.79 5.79 5.78 5.77 5.77 5.76 5.76 5.75 5.75 5.75 5.72 5.70 5.66 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.70 4.68 4.66 4.64 4.62 4.60 4.59 4.58 4.57 4.56 4.55 4.54 4.53 4.53 4.52 4.52 4.51 4.50 4.50 4.50 4.46 4.44 4.41 4.36
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00 3.98 3.96 3.94 3.92 3.91 3.90 3.88 3.87 3.86 3.86 3.85 3.84 3.83 3.83 3.82 3.82 3.81 3.81 3.77 3.75 3.71 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.60 3.57 3.55 3.53 3.51 3.49 3.48 3.47 3.46 3.44 3.43 3.43 3.42 3.41 3.40 3.40 3.39 3.39 3.38 3.38 3.34 3.32 3.27 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.31 3.28 3.26 3.24 3.22 3.20 3.19 3.17 3.16 3.15 3.14 3.13 3.12 3.12 3.11 3.10 3.10 3.09 3.08 3.08 3.04 3.02 2.97 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.10 3.07 3.05 3.03 3.01 2.99 2.97 2.96 2.95 2.94 2.93 2.92 2.91 2.90 2.89 2.89 2.88 2.87 2.87 2.86 2.83 2.80 2.76 2.71
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.94 2.91 2.89 2.86 2.85 2.83 2.81 2.80 2.79 2.77 2.76 2.75 2.75 2.74 2.73 2.72 2.72 2.71 2.70 2.70 2.66 2.64 2.59 2.54
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.82 2.79 2.76 2.74 2.72 2.70 2.69 2.67 2.66 2.65 2.64 2.63 2.62 2.61 2.60 2.59 2.59 2.58 2.58 2.57 2.53 2.51 2.46 2.40
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.72 2.69 2.66 2.64 2.62 2.60 2.58 2.57 2.56 2.54 2.53 2.52 2.51 2.51 2.50 2.49 2.48 2.48 2.47 2.47 2.43 2.40 2.35 2.30
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.63 2.60 2.58 2.55 2.53 2.51 2.50 2.48 2.47 2.46 2.45 2.44 2.43 2.42 2.41 2.41 2.40 2.39 2.39 2.38 2.34 2.31 2.26 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.57 2.53 2.51 2.48 2.46 2.44 2.43 2.41 2.40 2.39 2.38 2.37 2.36 2.35 2.34 2.33 2.33 2.32 2.31 2.31 2.27 2.24 2.19 2.13
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.51 2.48 2.45 2.42 2.40 2.38 2.37 2.35 2.34 2.33 2.32 2.31 2.30 2.29 2.28 2.27 2.27 2.26 2.25 2.25 2.20 2.18 2.12 2.07
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.46 2.42 2.40 2.37 2.35 2.33 2.32 2.30 2.29 2.28 2.26 2.25 2.24 2.24 2.23 2.22 2.21 2.21 2.20 2.19 2.15 2.12 2.07 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.41 2.38 2.35 2.33 2.31 2.29 2.27 2.26 2.24 2.23 2.22 2.21 2.20 2.19 2.18 2.17 2.17 2.16 2.15 2.15 2.10 2.08 2.02 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.37 2.34 2.31 2.29 2.27 2.25 2.23 2.22 2.20 2.19 2.18 2.17 2.16 2.15 2.14 2.13 2.13 2.12 2.11 2.11 2.06 2.04 1.98 1.92
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.34 2.31 2.28 2.26 2.23 2.21 2.20 2.18 2.17 2.16 2.14 2.13 2.12 2.11 2.11 2.10 2.09 2.08 2.08 2.07 2.03 2.00 1.94 1.88
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.31 2.28 2.25 2.22 2.20 2.18 2.17 2.15 2.14 2.12 2.11 2.10 2.09 2.08 2.07 2.07 2.06 2.05 2.05 2.04 1.99 1.97 1.91 1.84
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.28 2.25 2.22 2.20 2.18 2.16 2.14 2.12 2.11 2.10 2.08 2.07 2.06 2.05 2.05 2.04 2.03 2.02 2.02 2.01 1.96 1.94 1.88 1.81
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.26 2.23 2.20 2.17 2.15 2.13 2.11 2.10 2.08 2.07 2.06 2.05 2.04 2.03 2.02 2.01 2.00 2.00 1.99 1.98 1.94 1.91 1.85 1.78
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.24 2.20 2.18 2.15 2.13 2.11 2.09 2.08 2.06 2.05 2.04 2.02 2.01 2.01 2.00 1.99 1.98 1.97 1.97 1.96 1.91 1.88 1.82 1.76
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.22 2.18 2.15 2.13 2.11 2.09 2.07 2.05 2.04 2.03 2.01 2.00 1.99 1.98 1.97 1.97 1.96 1.95 1.95 1.94 1.89 1.86 1.80 1.73
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.20 2.16 2.14 2.11 2.09 2.07 2.05 2.04 2.02 2.01 2.00 1.98 1.97 1.96 1.96 1.95 1.94 1.93 1.93 1.92 1.87 1.84 1.78 1.71
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.18 2.15 2.12 2.09 2.07 2.05 2.03 2.02 2.00 1.99 1.98 1.97 1.96 1.95 1.94 1.93 1.92 1.91 1.91 1.90 1.85 1.82 1.76 1.69
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.17 2.13 2.10 2.08 2.06 2.04 2.02 2.00 1.99 1.97 1.96 1.95 1.94 1.93 1.92 1.91 1.90 1.90 1.89 1.88 1.84 1.81 1.74 1.67
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.15 2.12 2.09 2.06 2.04 2.02 2.00 1.99 1.97 1.96 1.95 1.93 1.92 1.91 1.91 1.90 1.89 1.88 1.88 1.87 1.82 1.79 1.73 1.65
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.14 2.10 2.08 2.05 2.03 2.01 1.99 1.97 1.96 1.94 1.93 1.92 1.91 1.90 1.89 1.88 1.88 1.87 1.86 1.85 1.81 1.77 1.71 1.64
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.13 2.09 2.06 2.04 2.01 1.99 1.98 1.96 1.95 1.93 1.92 1.91 1.90 1.89 1.88 1.87 1.86 1.85 1.85 1.84 1.79 1.76 1.70 1.62
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.04 2.00 1.97 1.95 1.92 1.90 1.89 1.87 1.85 1.84 1.83 1.81 1.80 1.79 1.78 1.77 1.77 1.76 1.75 1.74 1.69 1.66 1.59 1.51
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.99 1.95 1.92 1.89 1.87 1.85 1.83 1.81 1.80 1.78 1.77 1.76 1.75 1.74 1.73 1.72 1.71 1.70 1.69 1.69 1.63 1.60 1.52 1.44
100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.89 1.85 1.82 1.79 1.77 1.75 1.73 1.71 1.69 1.68 1.66 1.65 1.64 1.63 1.62 1.61 1.60 1.59 1.58 1.57 1.52 1.48 1.39 1.28
Inf 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.79 1.75 1.72 1.69 1.67 1.64 1.62 1.60 1.59 1.57 1.56 1.54 1.53 1.52 1.51 1.50 1.49 1.48 1.47 1.46 1.39 1.35 1.24 1.00