Beispieldaten Korrelation in VL

Statistik: Übung

Author
Affiliation

Prof. Dr. Armin Eichinger

TH Deggendorf

Published

13.01.2025

Aufgabe

Gegeben sind die folgenden Daten zu Größe und Gewicht, die im Rahmen einer Vorlesung erhoben worden sind:

  height weight
1    191     81
2    172     56
3    190    110
4    165     55
5    177     86
6    167     65

Bestimmen Sie mit Hilfe von grundlegenden R-Funktionen (alternativ: Taschenrechner):

  • Kovarianz
  • Standardabweichungen
  • Korrelationskoeffizient r
  • 95%-Kondidenzintervall für r
  • Signifikanztest für r
  • p-Wert (geht mit Taschenrechner nicht)

Lösung ab hier

Größe und Gewicht: Daten einlesen und r erzeugen

Vorarbeit: MW, SD, COV

grgw_data <- data.frame(height=c(191,172, 190, 165, 177, 167), 
                        weight=c(81, 56, 110, 55, 86, 65))

# Daten transformiert in Ränge
#grgw_data <- data.frame(height=c(1, 4, 2, 6, 3, 5), 
#                        weight=c(3, 5, 1, 6, 2, 4))

head(grgw_data)
  height weight
1    191     81
2    172     56
3    190    110
4    165     55
5    177     86
6    167     65
mw_w <- mean(grgw_data$weight)
mw_h <- mean(grgw_data$height)

mw_h
[1] 177
mw_w
[1] 75.5
# Kovarianz
my_cov <- cov(grgw_data$height, grgw_data$weight)
my_cov
[1] 194.8
# Standardabweichungen
sd_w <- sd(grgw_data$weight)
sd_h <- sd(grgw_data$height)

sd_h
[1] 11.26055
sd_w
[1] 21.1731
# r händisch
my_r <- my_cov/(sd_w*sd_h)
my_r
[1] 0.8170431
# r mit Funtion cor()
my_r_2 <- cor(grgw_data$height,grgw_data$weight)
my_r_2
[1] 0.8170431

Konfidenzintervall

# Stichprobengröße n
my_n <- length(grgw_data$height )

# Standardfehler
my_se <- 1/sqrt(my_n - 3)

# Fisher-Z-Transformation r → z
my_r_fz <- 0.5*log((1+my_r)/(1-my_r))

# oberes und unteres Ende des KI
ki_down_z <- my_r_fz - 1.96*my_se
ki_up_z <- my_r_fz + 1.96*my_se 

ki_down_z
[1] 0.01625101
ki_up_z
[1] 2.279464
# oberes und unteres Ende des KI rücktransformieren (z→r)
ki_down <- (exp(2*ki_down_z)-1)/(exp(2*ki_down_z)+1)
ki_up <- (exp(2*ki_up_z)-1)/(exp(2*ki_up_z)+1)

ki_down
[1] 0.01624957
ki_up
[1] 0.9792705

Signifikanztest

Annahme: Gerichtete Hypothese (positive Korrelation)

# Teststatistik t berechnen (= empirischer t-Wert)
my_t <- (my_r * sqrt(my_n-2)) / sqrt(1-my_r*my_r)
my_t
[1] 2.834118
# kritischer t-Wert
my_t_krit <- qt(0.95,my_n-2)
my_t_krit
[1] 2.131847
# p-Wert
my_p <- pt(my_t,length(grgw_data$height) - 2,lower.tail = FALSE)
my_p
[1] 0.02357389

Anhang: t-Verteilung

df 0.01 0.025 0.05 0.10 0.25 0.5 0.75 0.90 0.95 0.975 0.99
1 -31.8205 -12.7062 -6.3138 -3.0777 -1.0000 0 1.0000 3.0777 6.3138 12.7062 31.8205
2 -6.9646 -4.3027 -2.9200 -1.8856 -0.8165 0 0.8165 1.8856 2.9200 4.3027 6.9646
3 -4.5407 -3.1824 -2.3534 -1.6377 -0.7649 0 0.7649 1.6377 2.3534 3.1824 4.5407
4 -3.7469 -2.7764 -2.1318 -1.5332 -0.7407 0 0.7407 1.5332 2.1318 2.7764 3.7469
5 -3.3649 -2.5706 -2.0150 -1.4759 -0.7267 0 0.7267 1.4759 2.0150 2.5706 3.3649
6 -3.1427 -2.4469 -1.9432 -1.4398 -0.7176 0 0.7176 1.4398 1.9432 2.4469 3.1427
7 -2.9980 -2.3646 -1.8946 -1.4149 -0.7111 0 0.7111 1.4149 1.8946 2.3646 2.9980
8 -2.8965 -2.3060 -1.8595 -1.3968 -0.7064 0 0.7064 1.3968 1.8595 2.3060 2.8965
9 -2.8214 -2.2622 -1.8331 -1.3830 -0.7027 0 0.7027 1.3830 1.8331 2.2622 2.8214
10 -2.7638 -2.2281 -1.8125 -1.3722 -0.6998 0 0.6998 1.3722 1.8125 2.2281 2.7638
11 -2.7181 -2.2010 -1.7959 -1.3634 -0.6974 0 0.6974 1.3634 1.7959 2.2010 2.7181
12 -2.6810 -2.1788 -1.7823 -1.3562 -0.6955 0 0.6955 1.3562 1.7823 2.1788 2.6810
13 -2.6503 -2.1604 -1.7709 -1.3502 -0.6938 0 0.6938 1.3502 1.7709 2.1604 2.6503
14 -2.6245 -2.1448 -1.7613 -1.3450 -0.6924 0 0.6924 1.3450 1.7613 2.1448 2.6245
15 -2.6025 -2.1314 -1.7531 -1.3406 -0.6912 0 0.6912 1.3406 1.7531 2.1314 2.6025
16 -2.5835 -2.1199 -1.7459 -1.3368 -0.6901 0 0.6901 1.3368 1.7459 2.1199 2.5835
17 -2.5669 -2.1098 -1.7396 -1.3334 -0.6892 0 0.6892 1.3334 1.7396 2.1098 2.5669
18 -2.5524 -2.1009 -1.7341 -1.3304 -0.6884 0 0.6884 1.3304 1.7341 2.1009 2.5524
19 -2.5395 -2.0930 -1.7291 -1.3277 -0.6876 0 0.6876 1.3277 1.7291 2.0930 2.5395
20 -2.5280 -2.0860 -1.7247 -1.3253 -0.6870 0 0.6870 1.3253 1.7247 2.0860 2.5280
21 -2.5176 -2.0796 -1.7207 -1.3232 -0.6864 0 0.6864 1.3232 1.7207 2.0796 2.5176
22 -2.5083 -2.0739 -1.7171 -1.3212 -0.6858 0 0.6858 1.3212 1.7171 2.0739 2.5083
23 -2.4999 -2.0687 -1.7139 -1.3195 -0.6853 0 0.6853 1.3195 1.7139 2.0687 2.4999
24 -2.4922 -2.0639 -1.7109 -1.3178 -0.6848 0 0.6848 1.3178 1.7109 2.0639 2.4922
25 -2.4851 -2.0595 -1.7081 -1.3163 -0.6844 0 0.6844 1.3163 1.7081 2.0595 2.4851
26 -2.4786 -2.0555 -1.7056 -1.3150 -0.6840 0 0.6840 1.3150 1.7056 2.0555 2.4786
27 -2.4727 -2.0518 -1.7033 -1.3137 -0.6837 0 0.6837 1.3137 1.7033 2.0518 2.4727
28 -2.4671 -2.0484 -1.7011 -1.3125 -0.6834 0 0.6834 1.3125 1.7011 2.0484 2.4671
29 -2.4620 -2.0452 -1.6991 -1.3114 -0.6830 0 0.6830 1.3114 1.6991 2.0452 2.4620
30 -2.4573 -2.0423 -1.6973 -1.3104 -0.6828 0 0.6828 1.3104 1.6973 2.0423 2.4573
31 -2.4528 -2.0395 -1.6955 -1.3095 -0.6825 0 0.6825 1.3095 1.6955 2.0395 2.4528
32 -2.4487 -2.0369 -1.6939 -1.3086 -0.6822 0 0.6822 1.3086 1.6939 2.0369 2.4487
33 -2.4448 -2.0345 -1.6924 -1.3077 -0.6820 0 0.6820 1.3077 1.6924 2.0345 2.4448
34 -2.4411 -2.0322 -1.6909 -1.3070 -0.6818 0 0.6818 1.3070 1.6909 2.0322 2.4411
35 -2.4377 -2.0301 -1.6896 -1.3062 -0.6816 0 0.6816 1.3062 1.6896 2.0301 2.4377
36 -2.4345 -2.0281 -1.6883 -1.3055 -0.6814 0 0.6814 1.3055 1.6883 2.0281 2.4345
37 -2.4314 -2.0262 -1.6871 -1.3049 -0.6812 0 0.6812 1.3049 1.6871 2.0262 2.4314
38 -2.4286 -2.0244 -1.6860 -1.3042 -0.6810 0 0.6810 1.3042 1.6860 2.0244 2.4286
39 -2.4258 -2.0227 -1.6849 -1.3036 -0.6808 0 0.6808 1.3036 1.6849 2.0227 2.4258
40 -2.4233 -2.0211 -1.6839 -1.3031 -0.6807 0 0.6807 1.3031 1.6839 2.0211 2.4233
41 -2.4208 -2.0195 -1.6829 -1.3025 -0.6805 0 0.6805 1.3025 1.6829 2.0195 2.4208
42 -2.4185 -2.0181 -1.6820 -1.3020 -0.6804 0 0.6804 1.3020 1.6820 2.0181 2.4185
43 -2.4163 -2.0167 -1.6811 -1.3016 -0.6802 0 0.6802 1.3016 1.6811 2.0167 2.4163
44 -2.4141 -2.0154 -1.6802 -1.3011 -0.6801 0 0.6801 1.3011 1.6802 2.0154 2.4141
45 -2.4121 -2.0141 -1.6794 -1.3006 -0.6800 0 0.6800 1.3006 1.6794 2.0141 2.4121
46 -2.4102 -2.0129 -1.6787 -1.3002 -0.6799 0 0.6799 1.3002 1.6787 2.0129 2.4102
47 -2.4083 -2.0117 -1.6779 -1.2998 -0.6797 0 0.6797 1.2998 1.6779 2.0117 2.4083
48 -2.4066 -2.0106 -1.6772 -1.2994 -0.6796 0 0.6796 1.2994 1.6772 2.0106 2.4066
49 -2.4049 -2.0096 -1.6766 -1.2991 -0.6795 0 0.6795 1.2991 1.6766 2.0096 2.4049
50 -2.4033 -2.0086 -1.6759 -1.2987 -0.6794 0 0.6794 1.2987 1.6759 2.0086 2.4033
51 -2.4017 -2.0076 -1.6753 -1.2984 -0.6793 0 0.6793 1.2984 1.6753 2.0076 2.4017
52 -2.4002 -2.0066 -1.6747 -1.2980 -0.6792 0 0.6792 1.2980 1.6747 2.0066 2.4002
53 -2.3988 -2.0057 -1.6741 -1.2977 -0.6791 0 0.6791 1.2977 1.6741 2.0057 2.3988
54 -2.3974 -2.0049 -1.6736 -1.2974 -0.6791 0 0.6791 1.2974 1.6736 2.0049 2.3974
55 -2.3961 -2.0040 -1.6730 -1.2971 -0.6790 0 0.6790 1.2971 1.6730 2.0040 2.3961
56 -2.3948 -2.0032 -1.6725 -1.2969 -0.6789 0 0.6789 1.2969 1.6725 2.0032 2.3948
57 -2.3936 -2.0025 -1.6720 -1.2966 -0.6788 0 0.6788 1.2966 1.6720 2.0025 2.3936
58 -2.3924 -2.0017 -1.6716 -1.2963 -0.6787 0 0.6787 1.2963 1.6716 2.0017 2.3924
59 -2.3912 -2.0010 -1.6711 -1.2961 -0.6787 0 0.6787 1.2961 1.6711 2.0010 2.3912
60 -2.3901 -2.0003 -1.6706 -1.2958 -0.6786 0 0.6786 1.2958 1.6706 2.0003 2.3901
61 -2.3890 -1.9996 -1.6702 -1.2956 -0.6785 0 0.6785 1.2956 1.6702 1.9996 2.3890
62 -2.3880 -1.9990 -1.6698 -1.2954 -0.6785 0 0.6785 1.2954 1.6698 1.9990 2.3880
63 -2.3870 -1.9983 -1.6694 -1.2951 -0.6784 0 0.6784 1.2951 1.6694 1.9983 2.3870
64 -2.3860 -1.9977 -1.6690 -1.2949 -0.6783 0 0.6783 1.2949 1.6690 1.9977 2.3860
65 -2.3851 -1.9971 -1.6686 -1.2947 -0.6783 0 0.6783 1.2947 1.6686 1.9971 2.3851
66 -2.3842 -1.9966 -1.6683 -1.2945 -0.6782 0 0.6782 1.2945 1.6683 1.9966 2.3842
67 -2.3833 -1.9960 -1.6679 -1.2943 -0.6782 0 0.6782 1.2943 1.6679 1.9960 2.3833
68 -2.3824 -1.9955 -1.6676 -1.2941 -0.6781 0 0.6781 1.2941 1.6676 1.9955 2.3824
69 -2.3816 -1.9949 -1.6672 -1.2939 -0.6781 0 0.6781 1.2939 1.6672 1.9949 2.3816
70 -2.3808 -1.9944 -1.6669 -1.2938 -0.6780 0 0.6780 1.2938 1.6669 1.9944 2.3808
71 -2.3800 -1.9939 -1.6666 -1.2936 -0.6780 0 0.6780 1.2936 1.6666 1.9939 2.3800
72 -2.3793 -1.9935 -1.6663 -1.2934 -0.6779 0 0.6779 1.2934 1.6663 1.9935 2.3793
73 -2.3785 -1.9930 -1.6660 -1.2933 -0.6779 0 0.6779 1.2933 1.6660 1.9930 2.3785
74 -2.3778 -1.9925 -1.6657 -1.2931 -0.6778 0 0.6778 1.2931 1.6657 1.9925 2.3778
75 -2.3771 -1.9921 -1.6654 -1.2929 -0.6778 0 0.6778 1.2929 1.6654 1.9921 2.3771
76 -2.3764 -1.9917 -1.6652 -1.2928 -0.6777 0 0.6777 1.2928 1.6652 1.9917 2.3764
77 -2.3758 -1.9913 -1.6649 -1.2926 -0.6777 0 0.6777 1.2926 1.6649 1.9913 2.3758
78 -2.3751 -1.9908 -1.6646 -1.2925 -0.6776 0 0.6776 1.2925 1.6646 1.9908 2.3751
79 -2.3745 -1.9905 -1.6644 -1.2924 -0.6776 0 0.6776 1.2924 1.6644 1.9905 2.3745
80 -2.3739 -1.9901 -1.6641 -1.2922 -0.6776 0 0.6776 1.2922 1.6641 1.9901 2.3739
81 -2.3733 -1.9897 -1.6639 -1.2921 -0.6775 0 0.6775 1.2921 1.6639 1.9897 2.3733
82 -2.3727 -1.9893 -1.6636 -1.2920 -0.6775 0 0.6775 1.2920 1.6636 1.9893 2.3727
83 -2.3721 -1.9890 -1.6634 -1.2918 -0.6775 0 0.6775 1.2918 1.6634 1.9890 2.3721
84 -2.3716 -1.9886 -1.6632 -1.2917 -0.6774 0 0.6774 1.2917 1.6632 1.9886 2.3716
85 -2.3710 -1.9883 -1.6630 -1.2916 -0.6774 0 0.6774 1.2916 1.6630 1.9883 2.3710
86 -2.3705 -1.9879 -1.6628 -1.2915 -0.6774 0 0.6774 1.2915 1.6628 1.9879 2.3705
87 -2.3700 -1.9876 -1.6626 -1.2914 -0.6773 0 0.6773 1.2914 1.6626 1.9876 2.3700
88 -2.3695 -1.9873 -1.6624 -1.2912 -0.6773 0 0.6773 1.2912 1.6624 1.9873 2.3695
89 -2.3690 -1.9870 -1.6622 -1.2911 -0.6773 0 0.6773 1.2911 1.6622 1.9870 2.3690
90 -2.3685 -1.9867 -1.6620 -1.2910 -0.6772 0 0.6772 1.2910 1.6620 1.9867 2.3685
91 -2.3680 -1.9864 -1.6618 -1.2909 -0.6772 0 0.6772 1.2909 1.6618 1.9864 2.3680
92 -2.3676 -1.9861 -1.6616 -1.2908 -0.6772 0 0.6772 1.2908 1.6616 1.9861 2.3676
93 -2.3671 -1.9858 -1.6614 -1.2907 -0.6771 0 0.6771 1.2907 1.6614 1.9858 2.3671
94 -2.3667 -1.9855 -1.6612 -1.2906 -0.6771 0 0.6771 1.2906 1.6612 1.9855 2.3667
95 -2.3662 -1.9853 -1.6611 -1.2905 -0.6771 0 0.6771 1.2905 1.6611 1.9853 2.3662
96 -2.3658 -1.9850 -1.6609 -1.2904 -0.6771 0 0.6771 1.2904 1.6609 1.9850 2.3658
97 -2.3654 -1.9847 -1.6607 -1.2903 -0.6770 0 0.6770 1.2903 1.6607 1.9847 2.3654
98 -2.3650 -1.9845 -1.6606 -1.2902 -0.6770 0 0.6770 1.2902 1.6606 1.9845 2.3650
99 -2.3646 -1.9842 -1.6604 -1.2902 -0.6770 0 0.6770 1.2902 1.6604 1.9842 2.3646
100 -2.3642 -1.9840 -1.6602 -1.2901 -0.6770 0 0.6770 1.2901 1.6602 1.9840 2.3642