Codebooks located at
5-year follow-up to Lale findings (which go through 2013; Lale (2015))
Lale Figure 1.
General linear downward effect has continued, \(R^2\) = 0.4654888. If we just focus on last few years, has this percentage of second job holders leveled off? (not sure best way analytically to test for this - polynomial? [8/3/19])
Note. Tried the 3-month floating average (“moving average.R”) but plot is extremely ragged (8/3/19)
Lale Figure 2a.
This is very ragged without geom_smooth
Smoothing across 3-month rolling average
Smoothing across 3-month rolling average
Smoothing across 3-month rolling average
Smoothing across 3-month rolling average
Smoothing across 3-month rolling average
Lale Figure 2C.
Lale Figure 2C.
Lale Figure 2C.
Maybe point out that it looks like White and Asian women who are predominantly driving the gender effect?
Lale Figure 2C.
Education with 3-month moving average estimate.
Age with 3-month moving average estimate.
Marital status with 3-month moving average estimate.
NOTE. Subsetting to only 2010 \(\rightarrow\) results in rMarkdown errors - will have to copy chunks separately for Lale (2015) graph continuation…
Recession data was taken from the National Bureau of Economic Research, which identified an 18-month United States recession lasting from December 2007 to June 2009. The categories of “Pre-recession”, “During”, and “Post-recession” are defined by this 18 month window.
Percentage second job holders per occupational category.
Overall percentages of second job-holders was seemingly not affected by the recession, with percentages being 6.04% Pre-recession, 5.81% During recession, and 5.4% Post-recession.
Regarding hours worked per week, first job reported figures ranged from 0 to 99, while self-reported other job earnings (from all other jobs [than the primary]) ranged from 0 to 99. We adjusted for seemingly out-of-range values by truncating cases to caps of 90 for primary job and 70 for “other” jobs. Summing the two variables resulted in total number of hours worked the previous week (across all jobs) estimates ranging from 1 to 130.
## `summarise()` regrouping output by 'second' (override with `.groups` argument)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## `summarise()` regrouping output by 'second' (override with `.groups` argument)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## `summarise()` regrouping output by 'second' (override with `.groups` argument)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
Sleep variable is:
Socializing variable is:
Exercise variable is:
Looking at seasonal patterns (month variable is HRMONTH): Time spent on activities that are considered resources or recovery: Sleeping, Socializing, and Exercising
## tibble [576 x 6] (S3: grouped_df/tbl_df/tbl/data.frame)
## $ second : num [1:576] 0 0 0 0 0 0 0 0 0 0 ...
## $ Year : Factor w/ 16 levels "2003","2004",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ HRMONTH: Factor w/ 12 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ average: num [1:576] 501 504 508 505 502 ...
## $ sd : num [1:576] 126 131 129 127 125 ...
## $ Second : chr [1:576] "One primary job" "One primary job" "One primary job" "One primary job" ...
## - attr(*, "groups")= tibble [48 x 3] (S3: tbl_df/tbl/data.frame)
## ..$ second: num [1:48] 0 0 0 0 0 0 0 0 0 0 ...
## ..$ Year : Factor w/ 16 levels "2003","2004",..: 1 2 3 4 5 6 7 8 9 10 ...
## ..$ .rows : list<int> [1:48]
## .. ..$ : int [1:12] 1 2 3 4 5 6 7 8 9 10 ...
## .. ..$ : int [1:12] 13 14 15 16 17 18 19 20 21 22 ...
## .. ..$ : int [1:12] 25 26 27 28 29 30 31 32 33 34 ...
## .. ..$ : int [1:12] 37 38 39 40 41 42 43 44 45 46 ...
## .. ..$ : int [1:12] 49 50 51 52 53 54 55 56 57 58 ...
## .. ..$ : int [1:12] 61 62 63 64 65 66 67 68 69 70 ...
## .. ..$ : int [1:12] 73 74 75 76 77 78 79 80 81 82 ...
## .. ..$ : int [1:12] 85 86 87 88 89 90 91 92 93 94 ...
## .. ..$ : int [1:12] 97 98 99 100 101 102 103 104 105 106 ...
## .. ..$ : int [1:12] 109 110 111 112 113 114 115 116 117 118 ...
## .. ..$ : int [1:12] 121 122 123 124 125 126 127 128 129 130 ...
## .. ..$ : int [1:12] 133 134 135 136 137 138 139 140 141 142 ...
## .. ..$ : int [1:12] 145 146 147 148 149 150 151 152 153 154 ...
## .. ..$ : int [1:12] 157 158 159 160 161 162 163 164 165 166 ...
## .. ..$ : int [1:12] 169 170 171 172 173 174 175 176 177 178 ...
## .. ..$ : int [1:12] 181 182 183 184 185 186 187 188 189 190 ...
## .. ..$ : int [1:12] 193 194 195 196 197 198 199 200 201 202 ...
## .. ..$ : int [1:12] 205 206 207 208 209 210 211 212 213 214 ...
## .. ..$ : int [1:12] 217 218 219 220 221 222 223 224 225 226 ...
## .. ..$ : int [1:12] 229 230 231 232 233 234 235 236 237 238 ...
## .. ..$ : int [1:12] 241 242 243 244 245 246 247 248 249 250 ...
## .. ..$ : int [1:12] 253 254 255 256 257 258 259 260 261 262 ...
## .. ..$ : int [1:12] 265 266 267 268 269 270 271 272 273 274 ...
## .. ..$ : int [1:12] 277 278 279 280 281 282 283 284 285 286 ...
## .. ..$ : int [1:12] 289 290 291 292 293 294 295 296 297 298 ...
## .. ..$ : int [1:12] 301 302 303 304 305 306 307 308 309 310 ...
## .. ..$ : int [1:12] 313 314 315 316 317 318 319 320 321 322 ...
## .. ..$ : int [1:12] 325 326 327 328 329 330 331 332 333 334 ...
## .. ..$ : int [1:12] 337 338 339 340 341 342 343 344 345 346 ...
## .. ..$ : int [1:12] 349 350 351 352 353 354 355 356 357 358 ...
## .. ..$ : int [1:12] 361 362 363 364 365 366 367 368 369 370 ...
## .. ..$ : int [1:12] 373 374 375 376 377 378 379 380 381 382 ...
## .. ..$ : int [1:12] 385 386 387 388 389 390 391 392 393 394 ...
## .. ..$ : int [1:12] 397 398 399 400 401 402 403 404 405 406 ...
## .. ..$ : int [1:12] 409 410 411 412 413 414 415 416 417 418 ...
## .. ..$ : int [1:12] 421 422 423 424 425 426 427 428 429 430 ...
## .. ..$ : int [1:12] 433 434 435 436 437 438 439 440 441 442 ...
## .. ..$ : int [1:12] 445 446 447 448 449 450 451 452 453 454 ...
## .. ..$ : int [1:12] 457 458 459 460 461 462 463 464 465 466 ...
## .. ..$ : int [1:12] 469 470 471 472 473 474 475 476 477 478 ...
## .. ..$ : int [1:12] 481 482 483 484 485 486 487 488 489 490 ...
## .. ..$ : int [1:12] 493 494 495 496 497 498 499 500 501 502 ...
## .. ..$ : int [1:12] 505 506 507 508 509 510 511 512 513 514 ...
## .. ..$ : int [1:12] 517 518 519 520 521 522 523 524 525 526 ...
## .. ..$ : int [1:12] 529 530 531 532 533 534 535 536 537 538 ...
## .. ..$ : int [1:12] 541 542 543 544 545 546 547 548 549 550 ...
## .. ..$ : int [1:12] 553 554 555 556 557 558 559 560 561 562 ...
## .. ..$ : int [1:12] 565 566 567 568 569 570 571 572 573 574 ...
## .. ..@ ptype: int(0)
## ..- attr(*, ".drop")= logi TRUE
Looking at seasonal patterns (month variable is HRMONTH): Time spent Caring for HH members
Looking at Seasonal Patterns: Time spent in HH Activities
#First, see what class these things are and confirm category variables are factors
str(lale$second)
## num [1:159512] 0 0 0 NA 0 0 0 0 0 0 ...
str(lale$Year)
## num [1:159512] 2003 2003 2003 2003 2003 ...
str(lale$age)
## chr [1:159512] "55 to 64 years" "25 to 54 years" "25 to 54 years" ...
str(lale$race); lale$race <- factor(lale$race)
## chr [1:159512] "Black" "White" "White" "Black" "White" "White" "White" ...
str(lale$marry); lale$marry <- factor(lale$marry)
## chr [1:159512] "Married" "Married" "Married" "Married" "Married" ...
str(lale$educ3); lale$educ3 <- factor(lale$educ3)
## chr [1:159512] "College or higher education" "Some college" "Some college" ...
str(lale$income2); lale$income2 <- factor(lale$income2)
## chr [1:159512] "$50,000 to $75,000" NA "$75,000 to $99,999" ...
str(lale$tot.hrs)
## int [1:159512] NA NA NA NA NA NA NA NA NA NA ...
#Reorder the race and income factors
lale$race <- factor(lale$race, levels = c("White", "Black", "Asian","Multiracial", "Native American/Pacific Islander"))
levels(lale$race)
## [1] "White" "Black"
## [3] "Asian" "Multiracial"
## [5] "Native American/Pacific Islander"
lale$income2 <- factor(lale$income2, levels = c("$30,000 to $50,000", "Less than $15,000", "$15,000 to $30,000", "$50,000 to $75,000", "$75,000 to $99,999", "$100,000 to $149,999", "$150,000 and over"))
levels(lale$income2)
## [1] "$30,000 to $50,000" "Less than $15,000" "$15,000 to $30,000"
## [4] "$50,000 to $75,000" "$75,000 to $99,999" "$100,000 to $149,999"
## [7] "$150,000 and over"
#Check to see if we have people that fall into both single/multiple by IV
xtabs(~lale$second + lale$Year, data = merged)
## lale$Year
## lale$second 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
## 0 11776 7740 7351 7235 6940 7210 7070 7046 6584 6478 5946
## 1 757 485 496 480 404 423 468 425 362 376 330
## lale$Year
## lale$second 2014 2015 2016 2017 2018
## 0 6061 5774 5448 5247 4922
## 1 343 306 305 327 269
xtabs(~lale$second + lale$age, data = merged)
## lale$age
## lale$second 16 to 24 years 25 to 54 years 55 to 64 years
## 0 8204 82576 18048
## 1 462 5063 1031
xtabs(~lale$second + lale$race, data = merged)
## lale$race
## lale$second White Black Asian Multiracial Native American/Pacific Islander
## 0 88943 13235 4334 1322 994
## 1 5480 777 147 107 45
xtabs(~lale$second + lale$marry, data = merged)
## lale$marry
## lale$second Married Single Widowed, divorced, or separated
## 0 61820 26737 20271
## 1 3464 1648 1444
xtabs(~lale$second + lale$educ3, data = merged)
## lale$educ3
## lale$second College or higher education High school graduate
## 0 42526 26066
## 1 3018 1141
## lale$educ3
## lale$second Less than high school Some college
## 0 8934 31302
## 1 246 2151
xtabs(~lale$second + lale$income2, data = merged)
## lale$income2
## lale$second $30,000 to $50,000 Less than $15,000 $15,000 to $30,000
## 0 20897 5101 14832
## 1 1368 266 928
## lale$income2
## lale$second $50,000 to $75,000 $75,000 to $99,999 $100,000 to $149,999
## 0 22052 17009 12887
## 1 1435 1081 707
## lale$income2
## lale$second $150,000 and over
## 0 9475
## 1 449
xtabs(~lale$second + lale$tot.hrs, data = merged)
## lale$tot.hrs
## lale$second 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
## 1 2 7 5 9 12 11 3 14 10 29 9 28 23 17 30 28 16
## lale$tot.hrs
## lale$second 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
## 1 35 17 62 28 49 35 53 63 38 32 55 29 114 27 69 48 58
## lale$tot.hrs
## lale$second 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
## 1 118 91 53 79 45 272 68 144 97 123 198 146 110 203 60 412 56
## lale$tot.hrs
## lale$second 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
## 1 210 72 87 268 148 67 84 43 414 39 59 48 69 141 43 27 48
## lale$tot.hrs
## lale$second 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
## 1 15 183 12 47 15 21 53 17 14 14 3 122 5 10 4 15 16
## lale$tot.hrs
## lale$second 86 87 88 90 91 92 93 94 95 96 97 98 99 100 104 108 109
## 1 4 2 5 22 2 9 1 4 11 7 1 2 1 19 1 3 1
## lale$tot.hrs
## lale$second 110 111 112 115 116 118 120 130
## 1 8 1 1 1 1 1 4 1
logit <- glm(second ~ Year + gender + age + race + marry + educ3 + income2, data = lale, family = "binomial") # logistic regression
summary(logit) #here's the summary table
##
## Call:
## glm(formula = second ~ Year + gender + age + race + marry + educ3 +
## income2, family = "binomial", data = lale)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.5312 -0.3827 -0.3381 -0.2874 2.9598
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 24.308117 5.810322 4.184 2.87e-05 ***
## Year -0.013283 0.002893 -4.591 4.41e-06 ***
## genderWomen 0.015898 0.026584 0.598 0.54980
## age25 to 54 years -0.089541 0.056835 -1.575 0.11515
## age55 to 64 years -0.165675 0.065613 -2.525 0.01157 *
## raceBlack -0.066199 0.041586 -1.592 0.11142
## raceAsian -0.659115 0.087988 -7.491 6.84e-14 ***
## raceMultiracial 0.236353 0.104378 2.264 0.02355 *
## raceNative American/Pacific Islander -0.237016 0.153826 -1.541 0.12336
## marrySingle 0.065713 0.036116 1.820 0.06883 .
## marryWidowed, divorced, or separated 0.218587 0.035742 6.116 9.61e-10 ***
## educ3High school graduate -0.652994 0.039239 -16.641 < 2e-16 ***
## educ3Less than high school -1.171472 0.073533 -15.931 < 2e-16 ***
## educ3Some college -0.169742 0.031622 -5.368 7.97e-08 ***
## income2Less than $15,000 -0.106511 0.069795 -1.526 0.12700
## income2$15,000 to $30,000 0.042984 0.044465 0.967 0.33370
## income2$50,000 to $75,000 -0.059184 0.039722 -1.490 0.13624
## income2$75,000 to $99,999 -0.136755 0.043898 -3.115 0.00184 **
## income2$100,000 to $149,999 -0.286607 0.050516 -5.674 1.40e-08 ***
## income2$150,000 and over -0.450071 0.059520 -7.562 3.98e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 47719 on 108486 degrees of freedom
## Residual deviance: 47010 on 108467 degrees of freedom
## (51025 observations deleted due to missingness)
## AIC: 47050
##
## Number of Fisher Scoring iterations: 6
exp(coef(logit)) #these are supposed to be the odds ratios ????
## (Intercept) Year
## 3.604799e+10 9.868047e-01
## genderWomen age25 to 54 years
## 1.016025e+00 9.143506e-01
## age55 to 64 years raceBlack
## 8.473217e-01 9.359446e-01
## raceAsian raceMultiracial
## 5.173088e-01 1.266621e+00
## raceNative American/Pacific Islander marrySingle
## 7.889783e-01 1.067920e+00
## marryWidowed, divorced, or separated educ3High school graduate
## 1.244318e+00 5.204852e-01
## educ3Less than high school educ3Some college
## 3.099104e-01 8.438823e-01
## income2Less than $15,000 income2$15,000 to $30,000
## 8.989649e-01 1.043921e+00
## income2$50,000 to $75,000 income2$75,000 to $99,999
## 9.425331e-01 8.721838e-01
## income2$100,000 to $149,999 income2$150,000 and over
## 7.508070e-01 6.375832e-01
exp(cbind(OR = coef(logit), confint.default(logit))) #95% confidence intervals of standard errors
## OR 2.5 % 97.5 %
## (Intercept) 3.604799e+10 4.084381e+05 3.181528e+15
## Year 9.868047e-01 9.812247e-01 9.924164e-01
## genderWomen 1.016025e+00 9.644432e-01 1.070367e+00
## age25 to 54 years 9.143506e-01 8.179647e-01 1.022094e+00
## age55 to 64 years 8.473217e-01 7.450719e-01 9.636037e-01
## raceBlack 9.359446e-01 8.626840e-01 1.015426e+00
## raceAsian 5.173088e-01 4.353658e-01 6.146748e-01
## raceMultiracial 1.266621e+00 1.032285e+00 1.554153e+00
## raceNative American/Pacific Islander 7.889783e-01 5.836170e-01 1.066602e+00
## marrySingle 1.067920e+00 9.949402e-01 1.146252e+00
## marryWidowed, divorced, or separated 1.244318e+00 1.160133e+00 1.334611e+00
## educ3High school graduate 5.204852e-01 4.819564e-01 5.620940e-01
## educ3Less than high school 3.099104e-01 2.683149e-01 3.579542e-01
## educ3Some college 8.438823e-01 7.931683e-01 8.978388e-01
## income2Less than $15,000 8.989649e-01 7.840305e-01 1.030748e+00
## income2$15,000 to $30,000 1.043921e+00 9.567953e-01 1.138980e+00
## income2$50,000 to $75,000 9.425331e-01 8.719369e-01 1.018845e+00
## income2$75,000 to $99,999 8.721838e-01 8.002805e-01 9.505475e-01
## income2$100,000 to $149,999 7.508070e-01 6.800312e-01 8.289489e-01
## income2$150,000 and over 6.375832e-01 5.673787e-01 7.164743e-01
## APA Table for Output
library(gtsummary)
tbl_regression(logit, exponentiate = TRUE, label = list(Year ~ "Year", gender ~ "Gender", age ~ "Age", race ~ "Race", marry ~ "Marital Status", educ3 ~ "Education level", income2 ~ "Income"))
Characteristic | OR1 | 95% CI1 | p-value |
---|---|---|---|
Year | 0.99 | 0.98, 0.99 | <0.001 |
Gender | |||
Men | — | — | |
Women | 1.02 | 0.96, 1.07 | 0.5 |
Age | |||
16 to 24 years | — | — | |
25 to 54 years | 0.91 | 0.82, 1.02 | 0.12 |
55 to 64 years | 0.85 | 0.75, 0.96 | 0.012 |
Race | |||
White | — | — | |
Black | 0.94 | 0.86, 1.01 | 0.11 |
Asian | 0.52 | 0.43, 0.61 | <0.001 |
Multiracial | 1.27 | 1.03, 1.55 | 0.024 |
Native American/Pacific Islander | 0.79 | 0.58, 1.05 | 0.12 |
Marital Status | |||
Married | — | — | |
Single | 1.07 | 0.99, 1.15 | 0.069 |
Widowed, divorced, or separated | 1.24 | 1.16, 1.33 | <0.001 |
Education level | |||
College or higher education | — | — | |
High school graduate | 0.52 | 0.48, 0.56 | <0.001 |
Less than high school | 0.31 | 0.27, 0.36 | <0.001 |
Some college | 0.84 | 0.79, 0.90 | <0.001 |
Income | |||
$30,000 to $50,000 | — | — | |
Less than $15,000 | 0.90 | 0.78, 1.03 | 0.13 |
$15,000 to $30,000 | 1.04 | 0.96, 1.14 | 0.3 |
$50,000 to $75,000 | 0.94 | 0.87, 1.02 | 0.14 |
$75,000 to $99,999 | 0.87 | 0.80, 0.95 | 0.002 |
$100,000 to $149,999 | 0.75 | 0.68, 0.83 | <0.001 |
$150,000 and over | 0.64 | 0.57, 0.72 | <0.001 |
1
OR = Odds Ratio, CI = Confidence Interval
|
#References
Lale, Etienne. 2015. “Multiple Jobholding over the Past Two Decades : Monthly Labor Review: U.S. Bureau of Labor Statistics.” 2015. https://www.bls.gov/opub/mlr/2015/article/multiple-jobholding-over-the-past-two-decades.htm.