—

library(gapminder)  
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
## ✔ ggplot2 3.2.1     ✔ purrr   0.3.4
## ✔ tibble  2.1.3     ✔ dplyr   0.8.3
## ✔ tidyr   1.0.0     ✔ stringr 1.4.0
## ✔ readr   1.3.1     ✔ forcats 0.4.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(corrplot)
## corrplot 0.90 loaded
gapminder
## # A tibble: 1,704 x 6
##    country     continent  year lifeExp      pop gdpPercap
##    <fct>       <fct>     <int>   <dbl>    <int>     <dbl>
##  1 Afghanistan Asia       1952    28.8  8425333      779.
##  2 Afghanistan Asia       1957    30.3  9240934      821.
##  3 Afghanistan Asia       1962    32.0 10267083      853.
##  4 Afghanistan Asia       1967    34.0 11537966      836.
##  5 Afghanistan Asia       1972    36.1 13079460      740.
##  6 Afghanistan Asia       1977    38.4 14880372      786.
##  7 Afghanistan Asia       1982    39.9 12881816      978.
##  8 Afghanistan Asia       1987    40.8 13867957      852.
##  9 Afghanistan Asia       1992    41.7 16317921      649.
## 10 Afghanistan Asia       1997    41.8 22227415      635.
## # … with 1,694 more rows
#quiz 4-1.
gapminder %>%
  filter(year=="2007") %>%
  ggplot(aes(x=lifeExp, fill=continent))+geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

#quiz 4-2.
gapminder %>%
  filter(year=="2007") %>%
  ggplot(aes(x=lifeExp, fill=continent))+geom_histogram()+facet_wrap(~continent)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

#quiz 4-3.
gapminder %>%
  filter(year=="2007") %>%
  ggplot(aes(fill=continent))+geom_boxplot(aes(y=lifeExp))

#quiz 4-4.
gapminder %>%
  ggplot(aes(x=year, y=lifeExp, group=country))+geom_line(aes(color=continent))

#quiz 4-5.
gapminder %>%
  ggplot(aes(x=year, y=lifeExp, group=country))+geom_line(aes(color=continent))+facet_wrap(~continent)

#quiz 4-6.
gapminder %>% 
  filter(year=="2007") %>%
  select(lifeExp, pop, gdpPercap) %>%
  cor() %>%
  corrplot.mixed()