MIFT Study 5 Analyses

About the study

From preregistration:

Hypothesis: This study will use a 2 (mutability: fluid vs stable) x 2 (construct: identity vs behavior) design. We have three main hypotheses: 

Hypothesis 1: We anticipate a main effect of mutability such that participants who learn about multiracial fluidity for Black/White biracial people will show reduced trust for multiracial people compared to participants who learn about multiracial stability.

Hypothesis 2: We anticipate a main effect of mutability such that participants who learn about multiracial fluidity for Black/White biracial people will view multiracial people as less authentic compared to participants who learn about multiracial stability. 

Hypothesis 3: We anticipate these effects will be qualified by an interaction with construct (identity vs behavior) such that the effect of fluidity on both trust and authenticity will be found in the behavior condition but not in the identity condition.

Dependent Variables:

  1. Trust
  • Speeded Trust Task
  • Trust Survey
  1. Authenticity
  • Authenticity Scale
  1. Perceptions Identity Fluidity
  • Perceptions of Multiracial Identity Fluidity Scale
  • Multiracial Identity Fluidity Scale – Should
  1. Additional Moderators and Exploratory Variables
  • Race Essentialism
  • Participant Race
  • Participant Political Orientation
  • Post-race Ideology

Conditions:

As we are using a between-subjects, 2 (mutability: fluid, stable) x 2 (construct: identity, behavior) design, participants will be randomly assigned to one of four conditions. In the identity condition, participants will be randomly assigned to either read an article indicating that multiracial identity is fluid or to read an article indicating multiracial identity is stable. In the racial behavior condition, participants will be randomly assigned to either read an article indicating that multiracial behavior is fluid or to read an article indicating multiracial behavior is stable.

Descriptive Statistics

Descriptives for whole sample (across all conditions)

Descriptive stats for main dependent variables (continued below)
whitemulti_trust_dif White Multiracial Black
Table continues below
trust_survey authen fluidity fluidity_should
postrace race_ess pol_or

Descriptives by condition

  • fluidbehav:

    Table continues below
      vars n mean sd median trimmed
    whitemulti_trust_dif 1 137 0.1141 0.5799 0.025 0.07122
    White 2 137 3.027 0.6297 3 3.04
    Multiracial 3 137 2.913 0.6262 3 2.933
    Black 4 137 2.992 0.7452 3 3.034
    trust_survey 5 138 4.894 1.005 4.9 4.904
    authen 6 138 5.04 1.138 5 5.089
    fluidity 7 138 4.646 0.9743 4.714 4.689
    fluidity_should 8 138 4.683 1.339 4.643 4.751
    postrace 9 138 3.359 1.567 3.4 3.311
    race_ess 10 138 3.908 1.193 4 3.938
    pol_or 11 138 3.275 1.716 3 3.152
    Table continues below
      mad min max range skew kurtosis
    whitemulti_trust_dif 0.2965 -1.6 2.675 4.275 1.186 5.279
    White 0.4448 1 4.875 3.875 -0.1481 1.082
    Multiracial 0.3336 1 4.925 3.925 -0.3291 1.757
    Black 0.5189 1 4.975 3.975 -0.4982 0.7212
    trust_survey 1.334 1.6 7 5.4 -0.2848 -0.03678
    authen 1.112 1 7 6 -0.5088 0.4185
    fluidity 0.9531 1.857 6.857 5 -0.4418 0.1076
    fluidity_should 1.165 1 7 6 -0.4357 0.03562
    postrace 2.076 1 7 6 0.1499 -0.8836
    race_ess 1.112 1 7 6 -0.1942 0.09905
    pol_or 1.483 1 7 6 0.4928 -0.6288
      se
    whitemulti_trust_dif 0.04954
    White 0.0538
    Multiracial 0.0535
    Black 0.06367
    trust_survey 0.08555
    authen 0.09683
    fluidity 0.08294
    fluidity_should 0.114
    postrace 0.1334
    race_ess 0.1016
    pol_or 0.1461
  • fluidident:

    Table continues below
      vars n mean sd median trimmed
    whitemulti_trust_dif 1 144 0.05937 0.4929 0.025 0.05172
    White 2 144 3.111 0.675 3.075 3.116
    Multiracial 3 144 3.051 0.5828 3 3.033
    Black 4 144 3.122 0.6723 3.05 3.136
    trust_survey 5 144 5.085 0.8853 5.25 5.083
    authen 6 144 5.281 0.9671 5.25 5.267
    fluidity 7 144 5.009 0.9694 5.143 5.053
    fluidity_should 8 144 4.928 1.434 5 5.017
    postrace 9 144 3.714 1.51 3.8 3.712
    race_ess 10 144 3.719 1.32 3.875 3.746
    pol_or 11 144 3.201 1.724 3 3.095
    Table continues below
      mad min max range skew
    whitemulti_trust_dif 0.4448 -1.275 1.6 2.875 0.196
    White 0.5745 1.1 5 3.9 0.01825
    Multiracial 0.4077 1.45 5 3.55 0.3982
    Black 0.556 1.225 5 3.775 -0.1851
    trust_survey 0.9637 2.7 6.7 4 -0.2203
    authen 1.112 2.75 7 4.25 -0.02288
    fluidity 0.8472 2.143 7 4.857 -0.4689
    fluidity_should 1.483 1 7 6 -0.4895
    postrace 1.779 1 7 6 0.03889
    race_ess 1.297 1 6.75 5.75 -0.1674
    pol_or 1.483 1 7 6 0.3074
      kurtosis se
    whitemulti_trust_dif 0.744 0.04107
    White 0.6465 0.05625
    Multiracial 0.997 0.04856
    Black 0.7422 0.05602
    trust_survey -0.9402 0.07378
    authen -0.5723 0.08059
    fluidity 0.1351 0.08078
    fluidity_should -0.3629 0.1195
    postrace -0.749 0.1258
    race_ess -0.5228 0.11
    pol_or -0.9822 0.1437
  • stablebehav:

    Table continues below
      vars n mean sd median trimmed
    whitemulti_trust_dif 1 140 0.07625 0.5445 0.05 0.08772
    White 2 140 3.094 0.5813 3.025 3.092
    Multiracial 3 140 3.017 0.5887 2.987 3.007
    Black 4 140 3.104 0.6802 3.088 3.115
    trust_survey 5 142 4.943 0.8485 5 4.925
    authen 6 142 5.479 1.032 5.5 5.533
    fluidity 7 142 3.909 0.9109 4 3.927
    fluidity_should 8 142 4.439 1.285 4.286 4.49
    postrace 9 142 3.366 1.339 3.4 3.368
    race_ess 10 142 4.018 1.147 4 4.071
    pol_or 11 142 3.331 1.67 3.5 3.246
    Table continues below
      mad min max range skew
    whitemulti_trust_dif 0.3706 -2.225 2.875 5.1 0.03116
    White 0.4448 1 5 4 0.02031
    Multiracial 0.5189 1 5 4 0.2306
    Black 0.5004 1 5 4 -0.1629
    trust_survey 0.8896 2.4 6.7 4.3 -0.04088
    authen 0.9266 2.25 7 4.75 -0.5737
    fluidity 0.8472 1.429 6.143 4.714 -0.1883
    fluidity_should 1.165 1 7 6 -0.2762
    postrace 1.483 1 6.6 5.6 0.04804
    race_ess 1.112 1 6.875 5.875 -0.4059
    pol_or 2.224 1 7 6 0.2435
      kurtosis se
    whitemulti_trust_dif 6.648 0.04602
    White 2.073 0.04913
    Multiracial 1.405 0.04976
    Black 1.132 0.05749
    trust_survey -0.5178 0.0712
    authen 0.06864 0.08664
    fluidity -0.001226 0.07644
    fluidity_should -0.1213 0.1078
    postrace -0.7785 0.1123
    race_ess 0.03305 0.09622
    pol_or -0.8119 0.1402
  • stableident:

    Table continues below
      vars n mean sd median trimmed
    whitemulti_trust_dif 1 130 0.05837 0.4271 0 0.04339
    White 2 130 3.156 0.6034 3.112 3.152
    Multiracial 3 130 3.097 0.5922 3.05 3.095
    Black 4 130 3.217 0.6379 3.275 3.254
    trust_survey 5 131 5.161 0.9516 5.3 5.146
    authen 6 131 5.508 1.073 5.75 5.562
    fluidity 7 131 3.714 1.023 3.857 3.755
    fluidity_should 8 131 4.345 1.375 4.286 4.39
    postrace 9 131 3.45 1.546 3.2 3.411
    race_ess 10 131 3.896 1.154 4 3.924
    pol_or 11 131 3.282 1.803 4 3.162
    Table continues below
      mad min max range skew kurtosis
    whitemulti_trust_dif 0.2595 -1.25 2.975 4.225 2.149 15.99
    White 0.5004 1.525 5 3.475 0.09147 0.5662
    Multiracial 0.5374 1.425 5 3.575 0.07993 0.4085
    Black 0.6301 1 5 4 -0.5742 0.9891
    trust_survey 1.038 1.7 7 5.3 -0.2545 -0.1357
    authen 1.112 1 7 6 -0.7224 1.04
    fluidity 0.8472 1 7 6 -0.2343 0.4854
    fluidity_should 1.271 1 7 6 -0.2923 -0.1181
    postrace 1.779 1 7 6 0.2616 -0.7794
    race_ess 1.112 1 6.875 5.875 -0.2366 -0.0447
    pol_or 2.965 1 7 6 0.2814 -0.8773
      se
    whitemulti_trust_dif 0.03746
    White 0.05292
    Multiracial 0.05194
    Black 0.05595
    trust_survey 0.08315
    authen 0.09377
    fluidity 0.08939
    fluidity_should 0.1201
    postrace 0.135
    race_ess 0.1008
    pol_or 0.1575

Demographics

participant gender
Man Woman Non-binary
209 335 11
participant race
White Black Latine Asian Native Other
366 83 33 54 2 17
## [1] 18
## [1] 90
## [1] 38.4721
## [1] 13.1567

GEE Model for Speeded Trust Task

From preregistration:

For the speeded trust task, we will fit a GEE regression model with trustworthiness ratings for each target face as the outcome and target race (within subjects—will be dummy coded with White as the comparison group), mutability (fluidity vs stability), and construct (identity vs behavior), and each of the interaction terms between the three as predictors.  

Findings:

NOTE: Don’t look at these p-values! They are not p-values

Estimates for the speeded trust model
term estimate std.error statistic p.value NA
(Intercept) 3.1009 0.0076 406.3328 0.0270 114.8256
mutability_factor1 0.0294 0.0076 3.8544 0.0270 1.0892
construct_factor1 0.0312 0.0076 4.0836 0.0270 1.1540
race_multi -0.0764 0.0108 -7.0800 0.0217 -3.5191
race_black 0.0121 0.0108 1.1218 0.0322 0.3760
mutability_factor1:construct_factor1 -0.0079 0.0076 -1.0348 0.0270 -0.2924
mutability_factor1:race_multi 0.0105 0.0108 0.9732 0.0217 0.4838
construct_factor1:race_multi 0.0187 0.0108 1.7300 0.0217 0.8599
mutability_factor1:race_black 0.0244 0.0108 2.2633 0.0322 0.7587
construct_factor1:race_black 0.0250 0.0108 2.3177 0.0322 0.7769
mutability_factor1:construct_factor1:race_multi -0.0089 0.0108 -0.8218 0.0217 -0.4085
mutability_factor1:construct_factor1:race_black 0.0012 0.0108 0.1146 0.0322 0.0384

THESE ARE THE P-VALUES

##                                     (Intercept) 
##                                     0.000000000 
##                              mutability_factor1 
##                                     0.276062324 
##                               construct_factor1 
##                                     0.248511124 
##                                      race_multi 
##                                     0.000432936 
##                                      race_black 
##                                     0.706890200 
##            mutability_factor1:construct_factor1 
##                                     0.769966860 
##                   mutability_factor1:race_multi 
##                                     0.628558396 
##                    construct_factor1:race_multi 
##                                     0.389848264 
##                   mutability_factor1:race_black 
##                                     0.448046766 
##                    construct_factor1:race_black 
##                                     0.437207988 
## mutability_factor1:construct_factor1:race_multi 
##                                     0.682906503 
## mutability_factor1:construct_factor1:race_black 
##                                     0.969367440
Emmeans for condition * race_multi
mutability_factor construct_factor race_multi emmean SE df asymp.LCL asymp.UCL
fluid behavior 0 3.0144 0.0475 Inf 2.9213 3.1076
stable behavior 0 3.1122 0.0478 Inf 3.0185 3.2059
fluid identity 0 3.1163 0.0438 Inf 3.0305 3.2022
stable identity 0 3.1850 0.0469 Inf 3.0932 3.2769
fluid behavior 1 2.9000 0.0719 Inf 2.7591 3.0408
stable behavior 1 3.0365 0.0702 Inf 2.8990 3.1740
fluid identity 1 3.0569 0.0590 Inf 2.9412 3.1727
stable identity 1 3.1289 0.0587 Inf 3.0139 3.2440
Emmeans for condition * race_black
mutability_factor construct_factor race_black emmean SE df asymp.LCL asymp.UCL
fluid behavior 0 2.9752 0.0475 Inf 2.8822 3.0683
stable behavior 0 3.0692 0.0494 Inf 2.9725 3.1660
fluid identity 0 3.0809 0.0482 Inf 2.9864 3.1754
stable identity 0 3.1256 0.0484 Inf 3.0306 3.2205
fluid behavior 1 2.9391 0.0795 Inf 2.7834 3.0949
stable behavior 1 3.0795 0.0764 Inf 2.9298 3.2293
fluid identity 1 3.0924 0.0683 Inf 2.9585 3.2263
stable identity 1 3.1884 0.0634 Inf 3.0641 3.3126

ANOVAs for Explicit Trust and Authenticity

From preregistration:

For each of the two other dependent variables (trust survey, authenticity scale), we will run a two-way analysis of variance to determine if there is any difference between participants who read the fluidity article and participants who read the stability article in the behavior vs identity conditions. We will use pairwise comparisons to test for differences by condition.   

Trust Survey

Findings:

Descriptive stats by mutability
mutability_factor min q1 median mean q3 max
fluid 1.6 4 5.1 4.991 5.7 7
stable 1.7 4 5.1 5.048 5.6 7
Descriptive stats by construct
construct_factor min q1 median mean q3 max
behavior 1.6 4 4.9 4.919 5.6 7
identity 1.7 4.05 5.3 5.121 5.8 7
Descriptive stats by mutability & construct
mutability_factor construct_factor min q1 median mean q3 max
fluid behavior 1.6 4 4.9 4.894 5.7 7
fluid identity 2.7 4.075 5.25 5.085 5.7 6.7
stable behavior 2.4 4.025 5 4.943 5.6 6.7
stable identity 1.7 4.1 5.3 5.161 5.8 7
ANOVA – explicit trust by condition
Sum Sq Df F value Pr(>F)
(Intercept) 13971.9977 1 16390.3593 0.0000
mutability_factor 0.5422 1 0.6360 0.4255
construct_factor 5.7845 1 6.7857 0.0094
mutability_factor:construct_factor 0.0264 1 0.0309 0.8604
Residuals 469.7012 551 NA NA
ANOVA – explicit trust by condition
eta.sq eta.sq.part
mutability_factor 0.0011 0.0012
construct_factor 0.0122 0.0122
mutability_factor:construct_factor 0.0001 0.0001

Authenticity

Findings:

Descriptive stats by mutability
mutability_factor min q1 median mean q3 max
fluid 1 4.5 5.25 5.163 6 7
stable 1 5 5.75 5.493 6.25 7
Descriptive stats by construct
construct_factor min q1 median mean q3 max
behavior 1 4.5 5.25 5.263 6 7
identity 1 4.75 5.5 5.389 6 7
Descriptive stats by mutability & construct
mutability_factor construct_factor min q1 median mean q3 max
fluid behavior 1 4.25 5 5.04 6 7
fluid identity 2.75 4.688 5.25 5.281 6 7
stable behavior 2.25 5 5.5 5.479 6.188 7
stable identity 1 5 5.75 5.508 6.125 7
ANOVA – authenticity by condition
Sum Sq Df F value Pr(>F)
(Intercept) 15727.9812 1 14181.8933 0.0000
mutability_factor 15.3381 1 13.8303 0.0002
construct_factor 2.5283 1 2.2798 0.1316
mutability_factor:construct_factor 1.5663 1 1.4123 0.2352
Residuals 611.0692 551 NA NA
ANOVA – authenticity by condition
eta.sq eta.sq.part
mutability_factor 0.0243 0.0245
construct_factor 0.0040 0.0041
mutability_factor:construct_factor 0.0025 0.0026

Exploratory Analyses

Identity Fluidity

From preregistration:

“To determine if there is any difference in participants’ belief that multiracial identity is fluid based on condition, we will run a two-way analysis of variance to determine if there is any difference between participants who read the fluidity article and participants who read the stability article in the behavior vs identity conditions. We will use pairwise comparisons to test for differences by condition.”

Descriptive stats by mutability
mutability_factor min q1 median mean q3 max
fluid 1.857 4.286 5 4.831 5.429 7
stable 1 3.143 4 3.816 4.429 7
Descriptive stats by construct
construct_factor min q1 median mean q3 max
behavior 1.429 3.714 4.286 4.272 5 6.857
identity 1 3.571 4.429 4.392 5.286 7
Descriptive stats by mutability & construct (continued below)
mutability_factor construct_factor min q1 median mean q3
fluid behavior 1.857 4 4.714 4.646 5.286
fluid identity 2.143 4.393 5.143 5.009 5.607
stable behavior 1.429 3.286 4 3.909 4.536
stable identity 1 3.143 3.857 3.714 4.429
max
6.857
7
6.143
7
ANOVA – fluidity by condition
Sum Sq Df F value Pr(>F)
(Intercept) 10342.4213 1 11011.7873 0.0000
mutability_factor 142.9180 1 152.1677 0.0000
construct_factor 0.9753 1 1.0385 0.3086
mutability_factor:construct_factor 10.7916 1 11.4900 0.0007
Residuals 517.5067 551 NA NA
Effect size – fluidity by condition
eta.sq eta.sq.part
mutability_factor 0.2125 0.2164
construct_factor 0.0015 0.0019
mutability_factor:construct_factor 0.0160 0.0204

Fluidity Should

From preregistration:

“To determine if there is any difference in participants’ belief that multiracial identity should be fluid based on condition, we will run a two-way analysis of variance to determine if there is any difference between participants who read the fluidity article and participants who read the stability article in the behavior vs identity conditions. We will use pairwise comparisons to test for differences by condition.”

Descriptive stats by mutability
mutability_factor min q1 median mean q3 max
fluid 1 4 4.857 4.808 6 7
stable 1 3.857 4.286 4.394 5.429 7
Descriptive stats by construct
construct_factor min q1 median mean q3 max
behavior 1 4 4.429 4.559 5.571 7
identity 1 4 4.714 4.65 5.714 7
Descriptive stats by mutability & construct
mutability_factor construct_factor min q1 median mean q3 max
fluid behavior 1 4 4.643 4.683 5.571 7
fluid identity 1 4 5 4.928 6.036 7
stable behavior 1 3.857 4.286 4.439 5.536 7
stable identity 1 3.857 4.286 4.345 5.286 7
ANOVA – fluidity should by condition
Sum Sq Df F value Pr(>F)
(Intercept) 11720.8151 1 6343.6586 0.0000
mutability_factor 23.7257 1 12.8411 0.0004
construct_factor 0.7828 1 0.4237 0.5154
mutability_factor:construct_factor 3.9665 1 2.1468 0.1434
Residuals 1018.0512 551 NA NA
Effect size – fluidity should by condition
eta.sq eta.sq.part
mutability_factor 0.0227 0.0228
construct_factor 0.0007 0.0008
mutability_factor:construct_factor 0.0038 0.0039

Essentialism

From preregistration:

“We will run a two-way analysis of variance to determine if race essentialism varies by mutability (fluid vs stable) and construct (identity vs behavior). If we find that there are no differences in race essentialism based on mutability and construct, we will examine whether race essentialism moderates the relationship between which article participants read and each of the two main dependent variables.”

Checking for differences in essentialism by condition

Descriptive stats by mutability
mutability_factor min q1 median mean q3 max
fluid 1 3 3.875 3.811 4.625 7
stable 1 3.375 4 3.959 4.75 6.875
Descriptive stats by construct
construct_factor min q1 median mean q3 max
behavior 1 3.25 4 3.963 4.75 7
identity 1 3 3.875 3.803 4.625 6.875
Descriptive stats by mutability & construct
mutability_factor construct_factor min q1 median mean q3 max
fluid behavior 1 3.25 4 3.908 4.625 7
fluid identity 1 2.844 3.875 3.719 4.625 6.75
stable behavior 1 3.375 4 4.018 4.844 6.875
stable identity 1 3.188 4 3.896 4.625 6.875
ANOVA – essentialism by condition
Sum Sq Df F value Pr(>F)
(Intercept) 8365.7144 1 5744.0370 0.0000
mutability_factor 2.8582 1 1.9625 0.1618
construct_factor 3.3392 1 2.2928 0.1306
mutability_factor:construct_factor 0.1566 1 0.1076 0.7431
Residuals 802.4859 551 NA NA
Effect size – essentialism by condition
eta.sq eta.sq.part
mutability_factor 0.0035 0.0035
construct_factor 0.0041 0.0041
mutability_factor:construct_factor 0.0002 0.0002

Checking for moderation by essentialism

From preregistration:

“For the speeded trust task, we will fit a linear regression model with the White/Multiracial trust difference score as the outcome and conditions (mutability: fluidity vs stability and construct: identity vs behavior), race essentialism, and each of the interaction terms between the three as predictors. If we find that any of the interactions are significant, we will conduct analyses to probe the interaction. For each of the two other dependent variables, we will fit an individual linear regression model including both conditions of mutability (fluidity vs stability) and construct (identity vs behavior), race essentialism, and each of the interaction terms between the three as predictors. If we find that any of interactions are significant for any of the models, we will conduct analyses for that model to probe the interaction.”

Speeded trust task

Estimates for the speeded trust model
term estimate std.error statistic p.value
(Intercept) -0.3588 0.0731 -4.9089 0.0000
mutability_factor1 -0.1405 0.0731 -1.9216 0.0552
construct_factor1 0.1245 0.0731 1.7038 0.0890
race_ess 0.1107 0.0179 6.1786 0.0000
mutability_factor1:construct_factor1 -0.0182 0.0731 -0.2487 0.8037
mutability_factor1:race_ess 0.0316 0.0179 1.7632 0.0784
construct_factor1:race_ess -0.0347 0.0179 -1.9392 0.0530
mutability_factor1:construct_factor1:race_ess 0.0080 0.0179 0.4489 0.6537
Summary for the speeded trust model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0742 0.0623 0.4981 6.2177 0 7 -393.745 805.489 844.295 134.701 543 551
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of race_ess when mutability_factor = stable: 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.14   0.03     5.32   0.00
## 
## Slope of race_ess when mutability_factor = fluid: 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.08   0.02     3.31   0.00
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of race_ess when construct_factor = identity: 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.08   0.02     3.07   0.00
## 
## Slope of race_ess when construct_factor = behavior: 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.15   0.03     5.61   0.00

Trust survey

Estimates for the trust survey model
term estimate std.error statistic p.value
(Intercept) 5.4968 0.1323 41.5345 0.0000
mutability_factor1 -0.1096 0.1323 -0.8281 0.4080
construct_factor1 -0.1186 0.1323 -0.8959 0.3707
race_ess -0.1221 0.0325 -3.7605 0.0002
mutability_factor1:construct_factor1 0.0585 0.1323 0.4420 0.6586
mutability_factor1:race_ess 0.0380 0.0325 1.1709 0.2421
construct_factor1:race_ess 0.0545 0.0325 1.6769 0.0941
mutability_factor1:construct_factor1:race_ess -0.0130 0.0325 -0.4004 0.6890
Summary for the trust survey model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0456 0.0334 0.9113 3.7349 0.0006 7 -731.908 1481.82 1520.69 454.227 547 555

Authenticity

Estimates for the authenticity model
term estimate std.error statistic p.value
(Intercept) 6.0320 0.1497 40.2865 0.0000
mutability_factor1 0.1270 0.1497 0.8483 0.3967
construct_factor1 -0.2134 0.1497 -1.4255 0.1546
race_ess -0.1802 0.0367 -4.9052 0.0000
mutability_factor1:construct_factor1 0.0718 0.1497 0.4793 0.6319
mutability_factor1:race_ess 0.0125 0.0367 0.3405 0.7336
construct_factor1:race_ess 0.0693 0.0367 1.8855 0.0599
mutability_factor1:construct_factor1:race_ess -0.0324 0.0367 -0.8821 0.3781
Summary for the authenticity model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0776 0.0658 1.031 6.5734 0 7 -800.402 1618.8 1657.67 581.39 547 555
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of race_ess when construct_factor = identity: 
## 
##    Est.   S.E.   t val.      p
## ------- ------ -------- ------
##   -0.11   0.05    -2.17   0.03
## 
## Slope of race_ess when construct_factor = behavior: 
## 
##    Est.   S.E.   t val.      p
## ------- ------ -------- ------
##   -0.25   0.05    -4.72   0.00

Participant race

Speeded trust task

From preregistration:

“We then will fit a linear regression model with the White/Multiracial trust difference score as the outcome and mutability (fluidity vs stability), construct (identity vs behavior), participant race, and each of the interaction terms between the three as predictors.”

Descriptive stats by participant race
race_factor min q1 median mean q3 max
White -1.675 -0.15 0.025 0.09375 0.325 2.975
Black -1.6 -0.2187 0 -0.03171 0.175 1.225
Latine -2.225 -0.025 0.075 0.1053 0.4 0.85
Asian -1.25 -0.05 0.0375 0.08634 0.2938 0.925
Native 0.525 0.5375 0.55 0.55 0.5625 0.575
Other -0.775 -0.25 0 0.1044 0.4 1.1
Descriptive stats by mutability (continued below)
mutability_factor race_factor min q1 median
fluid White -1.575 -0.175 0.025
fluid Black -1.6 -0.3188 0
fluid Latine -0.85 0 0.075
fluid Asian -0.55 -0.0375 0.0375
fluid Native 0.525 0.5375 0.55
fluid Other -0.375 -0.2438 -0.000000000000000222
stable White -1.675 -0.125 0
stable Black -0.85 -0.2 0.0375
stable Latine -2.225 -0.0625 0.1625
stable Asian -1.25 -0.1156 0.05
stable Other -0.775 -0.1375 0
mean q3 max
0.1075 0.3313 2.675
-0.1066 0.1687 1.225
0.169 0.4 0.85
0.1175 0.25 0.925
0.55 0.5625 0.575
0.04583 0.1125 0.825
0.07961 0.3 2.975
0.03295 0.1813 0.925
-0.00625 0.3313 0.825
0.0474 0.3 0.85
0.1364 0.4125 1.1
Descriptive stats by construct (continued below)
construct_factor race_factor min q1 median
behavior White -1.675 -0.175 0
behavior Black -1.6 -0.2 0.075
behavior Latine -2.225 -0.025 0.2
behavior Asian -0.375 0.01875 0.1125
behavior Other -0.325 -0.000000000000000111 0.0625
identity White -1.25 -0.125 0.05
identity Black -1.275 -0.225 0
identity Latine -0.85 -0.0125 0.025
identity Asian -1.25 -0.2656 0
identity Native 0.525 0.5375 0.55
identity Other -0.775 -0.375 -0.025
mean q3 max
0.09333 0.325 2.875
0.01556 0.3 0.925
0.1221 0.45 0.85
0.1906 0.3 0.85
0.2344 0.3187 1.1
0.09417 0.3062 2.975
-0.08919 0.1 1.225
0.0875 0.325 0.85
0.002917 0.2312 0.925
0.55 0.5625 0.575
-0.01111 0.4 0.925
Descriptive stats by mutability & construct (continued below)
mutability_factor construct_factor race_factor min
fluid behavior White -1.575
fluid behavior Black -1.6
fluid behavior Latine -0.15
fluid behavior Asian -0.25
fluid behavior Other -0.325
fluid identity White -1.05
fluid identity Black -1.275
fluid identity Latine -0.85
fluid identity Asian -0.55
fluid identity Native 0.525
fluid identity Other -0.375
stable behavior White -1.675
stable behavior Black -0.85
stable behavior Latine -2.225
stable behavior Asian -0.375
stable behavior Other 0
stable identity White -1.25
stable identity Black -0.4
stable identity Latine -0.4
stable identity Asian -1.25
stable identity Other -0.775
q1 median mean q3 max
-0.1625 0.025 0.1398 0.2625 2.675
-0.25 0.025 -0.05341 0.175 0.475
-0.025 0.175 0.2188 0.3188 0.85
0 0.025 0.1283 0.15 0.825
-0.0000000000000004441 0 0.13 0.15 0.825
-0.175 0.05 0.08094 0.375 1.6
-0.5563 -0.0625 -0.1797 0.075 1.225
0 0.025 0.1028 0.4 0.85
-0.1625 0.125 0.1067 0.3375 0.925
0.5375 0.55 0.55 0.5625 0.575
-0.375 -0.375 -0.375 -0.375 -0.375
-0.175 0 0.05475 0.35 2.875
-0.175 0.125 0.08152 0.3125 0.925
0.05 0.275 -0.11 0.525 0.825
0.15 0.3 0.2944 0.4 0.85
0.0625 0.125 0.4083 0.6125 1.1
-0.075 0.05 0.1111 0.2625 2.975
-0.2 0 -0.02024 0.1 0.425
-0.075 0 0.06786 0.3 0.425
-0.2562 -0.025 -0.1008 0.05 0.475
-0.2938 -0.0125 0.03437 0.4063 0.925
White Black Latine Asian Native Other
366 83 33 54 2 17
Estimates for the speeded trust model
term estimate std.error statistic p.value
(Intercept) 0.4720 0.3272 1.4429 0.1496
mutability_factor1 0.1719 0.1661 1.0353 0.3010
construct_factor1 -0.2197 0.1661 -1.3232 0.1863
race_factor1 -0.0698 0.0318 -2.1931 0.0287
race_factor2 0.0143 0.0332 0.4311 0.6666
race_factor3 0.0165 0.0203 0.8111 0.4177
race_factor4 0.4989 0.4100 1.2169 0.2242
race_factor5 -0.0845 0.0872 -0.9688 0.3331
mutability_factor1:construct_factor1 0.0328 0.1661 0.1973 0.8437
mutability_factor1:race_factor1 0.0437 0.0318 1.3719 0.1707
mutability_factor1:race_factor2 -0.0403 0.0332 -1.2116 0.2262
mutability_factor1:race_factor3 0.0000 0.0203 0.0001 0.9999
mutability_factor1:race_factor4 0.1823 0.1694 1.0757 0.2825
mutability_factor1:race_factor5 NA NA NA NA
construct_factor1:race_factor1 -0.0282 0.0318 -0.8856 0.3762
construct_factor1:race_factor2 0.0148 0.0332 0.4441 0.6571
construct_factor1:race_factor3 -0.0225 0.0203 -1.1086 0.2681
construct_factor1:race_factor4 -0.1831 0.1694 -1.0808 0.2803
construct_factor1:race_factor5 NA NA NA NA
mutability_factor1:construct_factor1:race_factor1 -0.0113 0.0318 -0.3562 0.7218
mutability_factor1:construct_factor1:race_factor2 0.0187 0.0332 0.5614 0.5748
mutability_factor1:construct_factor1:race_factor3 -0.0324 0.0203 -1.5924 0.1119
mutability_factor1:construct_factor1:race_factor4 0.0290 0.1694 0.1712 0.8641
mutability_factor1:construct_factor1:race_factor5 NA NA NA NA
Summary for the speeded trust model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0308 -0.0058 0.5158 0.8424 0.6617 20 -406.366 856.731 951.589 141.015 530 551

Trust survey

From preregistration:

“For each of the other two dependent variables, we will fit an individual linear regression model including mutability (fluidity vs stability), construct (identity vs behavior), participant race, and each of the interaction terms between the three as predictors.”

Descriptive stats by participant race
race_factor min q1 median mean q3 max
White 1.6 4.125 5.2 5.107 5.8 7
Black 3.4 4 4.7 4.78 5.55 7
Latine 2.6 4.3 5.3 5.1 5.6 6.7
Asian 2.4 4 4.8 4.737 5.175 6.7
Native 5.4 5.45 5.5 5.5 5.55 5.6
Other 3.3 4 5 4.982 5.6 6.8
Descriptive stats by mutability
mutability_factor race_factor min q1 median mean q3 max
fluid White 1.6 4 5.3 5.097 5.8 6.8
fluid Black 3.4 4 4.45 4.708 5.275 7
fluid Latine 2.6 4.3 5.4 5.176 6 6.7
fluid Asian 3 4 4.7 4.693 5.175 6.5
fluid Native 5.4 5.45 5.5 5.5 5.55 5.6
fluid Other 3.3 4 4.1 4.217 4.5 5.2
stable White 1.7 4.3 5.2 5.117 5.8 7
stable Black 3.4 4 4.8 4.84 5.6 6.5
stable Latine 4 4.75 5.15 4.967 5.4 5.6
stable Asian 2.4 4.075 4.8 4.792 5.15 6.7
stable Other 4 4.7 5.4 5.4 6.25 6.8
Descriptive stats by construct
construct_factor race_factor min q1 median mean q3 max
behavior White 1.6 4 5.1 5.032 5.7 6.8
behavior Black 3.4 4 4.65 4.707 5.2 7
behavior Latine 2.6 4 5.4 4.976 5.6 6.7
behavior Asian 2.4 4 4.25 4.433 4.925 6.5
behavior Other 3.3 4 4.8 4.862 5.425 6.7
identity White 1.7 4.4 5.4 5.183 5.8 7
identity Black 3.4 4 4.7 4.87 5.6 6.5
identity Latine 4 4.825 5.3 5.231 5.7 6.7
identity Asian 3.2 4.525 4.95 4.98 5.55 6.7
identity Native 5.4 5.45 5.5 5.5 5.55 5.6
identity Other 4 4.2 5 5.089 5.6 6.8
Descriptive stats by mutability & construct (continued below)
mutability_factor construct_factor race_factor min q1 median
fluid behavior White 1.6 4 5.2
fluid behavior Black 3.5 4 4.55
fluid behavior Latine 2.6 4 5.4
fluid behavior Asian 3 4 4.4
fluid behavior Other 3.3 4 4
fluid identity White 2.7 4.4 5.4
fluid identity Black 3.4 4 4.35
fluid identity Latine 4 5.1 5.3
fluid identity Asian 3.2 4 4.7
fluid identity Native 5.4 5.45 5.5
fluid identity Other 4.2 4.2 4.2
stable behavior White 3.2 4.3 5.1
stable behavior Black 3.4 4 4.7
stable behavior Latine 4 5 5
stable behavior Asian 2.4 4 4.1
stable behavior Other 5 5.55 6.1
stable identity White 1.7 4.375 5.35
stable identity Black 3.7 4 4.9
stable identity Latine 4 4.5 5.3
stable identity Asian 3.9 4.8 5.1
stable identity Other 4 4.3 5.2
mean q3 max
5.019 5.8 6.8
4.709 5.125 7
4.983 5.85 6.7
4.62 5.15 6.5
4.22 4.6 5.2
5.161 5.8 6.6
4.706 5.375 6.4
5.433 6 6.7
4.767 5.35 6.4
5.5 5.55 5.6
4.2 4.2 4.2
5.043 5.6 6.7
4.704 5.2 5.8
4.96 5.4 5.4
4.122 4.8 5
5.933 6.4 6.7
5.211 6 7
4.995 5.7 6.5
4.971 5.45 5.6
5.193 5.6 6.7
5.2 5.8 6.8
White Black Latine Asian Native Other
366 83 33 54 2 17
Estimates for the trust survey model
term estimate std.error statistic p.value
(Intercept) 5.6496 0.5790 9.7570 0.0000
mutability_factor1 0.6783 0.2939 2.3079 0.0214
construct_factor1 -0.1883 0.2939 -0.6408 0.5219
race_factor1 -0.1649 0.0561 -2.9414 0.0034
race_factor2 0.0478 0.0588 0.8127 0.4168
race_factor3 -0.0790 0.0360 -2.1947 0.0286
race_factor4 0.8894 0.7256 1.2258 0.2208
race_factor5 -0.1523 0.1544 -0.9859 0.3246
mutability_factor1:construct_factor1 -0.1783 0.2939 -0.6067 0.5443
mutability_factor1:race_factor1 0.0263 0.0561 0.4696 0.6388
mutability_factor1:race_factor2 -0.0553 0.0588 -0.9407 0.3473
mutability_factor1:race_factor3 -0.0018 0.0360 -0.0495 0.9605
mutability_factor1:race_factor4 0.6908 0.2999 2.3034 0.0216
mutability_factor1:race_factor5 NA NA NA NA
construct_factor1:race_factor1 -0.0028 0.0561 -0.0508 0.9595
construct_factor1:race_factor2 0.0135 0.0588 0.2293 0.8188
construct_factor1:race_factor3 0.0540 0.0360 1.5012 0.1339
construct_factor1:race_factor4 -0.3307 0.2999 -1.1028 0.2706
construct_factor1:race_factor5 NA NA NA NA
mutability_factor1:construct_factor1:race_factor1 0.0334 0.0561 0.5965 0.5511
mutability_factor1:construct_factor1:race_factor2 -0.0499 0.0588 -0.8483 0.3967
mutability_factor1:construct_factor1:race_factor3 0.0602 0.0360 1.6743 0.0947
mutability_factor1:construct_factor1:race_factor4 -0.2287 0.2999 -0.7627 0.4460
mutability_factor1:construct_factor1:race_factor5 NA NA NA NA
Summary for the trust survey model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0648 0.0298 0.913 1.851 0.0138 20 -726.264 1496.53 1591.55 445.082 534 555

Authenticity

Descriptive stats by participant race
race_factor min q1 median mean q3 max
White 1 4.75 5.5 5.426 6 7
Black 2.25 4.5 5 5.039 5.75 7
Latine 2.75 4.75 5.5 5.311 6 7
Asian 2 4.5 5.125 5.13 6 7
Native 4.75 4.875 5 5 5.125 5.25
Other 3 4.25 5.25 5.25 6 7
Descriptive stats by mutability
mutability_factor race_factor min q1 median mean q3 max
fluid White 1 4.5 5.25 5.304 6 7
fluid Black 2.25 4.5 5 4.783 5.438 6.5
fluid Latine 2.75 4 5.25 5.167 6 7
fluid Asian 2 4.312 5 4.95 5.688 6.5
fluid Native 4.75 4.875 5 5 5.125 5.25
fluid Other 3 4 4.25 4.333 4.875 5.5
stable White 1 5 5.75 5.55 6.25 7
stable Black 2.75 4.5 5.5 5.256 6 7
stable Latine 4.75 5.438 5.5 5.562 5.812 6
stable Asian 2.25 4.5 5.625 5.354 6.062 7
stable Other 4 5.125 6 5.75 6.375 7
Descriptive stats by construct
construct_factor race_factor min q1 median mean q3 max
behavior White 1 4.75 5.5 5.384 6 7
behavior Black 2.25 4.5 5 5.098 6 7
behavior Latine 2.75 4.25 5.25 5.029 5.75 7
behavior Asian 2 4 5 4.896 6 6.5
behavior Other 3 4 5 5 6 7
identity White 1 4.75 5.5 5.468 6.25 7
identity Black 3.25 4 5 4.966 5.75 7
identity Latine 3 5.25 5.75 5.609 6 7
identity Asian 3.5 4.562 5.375 5.317 6 7
identity Native 4.75 4.875 5 5 5.125 5.25
identity Other 4 5 5.25 5.472 6.25 7
Descriptive stats by mutability & construct (continued below)
mutability_factor construct_factor race_factor min q1 median
fluid behavior White 1 4.5 5.25
fluid behavior Black 2.25 4.5 5
fluid behavior Latine 2.75 3.938 4.625
fluid behavior Asian 2 4.125 5
fluid behavior Other 3 4 4
fluid identity White 2.75 4.75 5.25
fluid identity Black 3.25 4 4.875
fluid identity Latine 3 5.25 5.75
fluid identity Asian 3.5 4.5 5
fluid identity Native 4.75 4.875 5
fluid identity Other 5 5 5
stable behavior White 2.5 5 5.75
stable behavior Black 2.75 4.688 5.25
stable behavior Latine 4.75 5.25 5.5
stable behavior Asian 2.25 4 5
stable behavior Other 6 6 6
stable identity White 1 5 5.75
stable identity Black 4 4 5.5
stable identity Latine 5.25 5.5 5.75
stable identity Asian 4 4.875 5.75
stable identity Other 4 4.812 5.625
mean q3 max
5.199 6 7
4.807 5.5 6.5
4.875 5.812 7
4.9 5.875 6.25
4.2 4.5 5.5
5.391 6 7
4.75 5.25 6
5.556 6.75 7
5 5.5 6.5
5 5.125 5.25
5 5 5
5.537 6 7
5.365 6.25 7
5.4 5.5 6
4.889 6 6.5
6.333 6.5 7
5.566 6.562 7
5.131 5.75 7
5.679 5.875 6
5.633 6.125 7
5.531 6.312 7
White Black Latine Asian Native Other
366 83 33 54 2 17
Estimates for the authenticity model
term estimate std.error statistic p.value
(Intercept) 5.3823 0.6644 8.1005 0.0000
mutability_factor1 0.6661 0.3373 1.9751 0.0488
construct_factor1 -0.0005 0.3373 -0.0015 0.9988
race_factor1 -0.2051 0.0643 -3.1877 0.0015
race_factor2 0.0530 0.0675 0.7857 0.4324
race_factor3 -0.0414 0.0413 -1.0032 0.3162
race_factor4 0.1757 0.8326 0.2110 0.8330
race_factor5 -0.0232 0.1772 -0.1310 0.8958
mutability_factor1:construct_factor1 -0.4005 0.3373 -1.1876 0.2355
mutability_factor1:race_factor1 0.0533 0.0643 0.8285 0.4078
mutability_factor1:race_factor2 -0.0065 0.0675 -0.0957 0.9238
mutability_factor1:race_factor3 -0.0048 0.0413 -0.1172 0.9067
mutability_factor1:race_factor4 0.4961 0.3441 1.4415 0.1500
mutability_factor1:race_factor5 NA NA NA NA
construct_factor1:race_factor1 -0.0638 0.0643 -0.9920 0.3217
construct_factor1:race_factor2 0.0829 0.0675 1.2277 0.2201
construct_factor1:race_factor3 0.0343 0.0413 0.8298 0.4070
construct_factor1:race_factor4 -0.1089 0.3441 -0.3163 0.7519
construct_factor1:race_factor5 NA NA NA NA
mutability_factor1:construct_factor1:race_factor1 -0.0017 0.0643 -0.0265 0.9789
mutability_factor1:construct_factor1:race_factor2 -0.0193 0.0675 -0.2864 0.7747
mutability_factor1:construct_factor1:race_factor3 0.0557 0.0413 1.3499 0.1776
mutability_factor1:construct_factor1:race_factor4 -0.3944 0.3441 -1.1462 0.2522
mutability_factor1:construct_factor1:race_factor5 NA NA NA NA
Summary for the authenticity model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0702 0.0354 1.0476 2.0159 0.0057 20 -802.617 1649.23 1744.25 586.05 534 555

Political orientation

Speeded trust task

From preregistration:

“We will also fit a linear regression model with the White/Multiracial trust difference score as the outcome and mutability (fluidity vs stability), construct (identity vs behavior), participant political orientation, and each of the interaction terms between the three as predictors. If we find that if any of the interactions are significant, we will conduct analyses to probe the interaction for that model.”

Estimates for the speeded trust model
term estimate std.error statistic p.value
(Intercept) -0.1903 0.0452 -4.2090 0.0000
mutability_factor1 0.0263 0.0452 0.5823 0.5606
construct_factor1 0.0779 0.0452 1.7223 0.0856
pol_or 0.0814 0.0122 6.6735 0.0000
mutability_factor1:construct_factor1 0.0873 0.0452 1.9309 0.0540
mutability_factor1:pol_or -0.0120 0.0122 -0.9798 0.3276
construct_factor1:pol_or -0.0281 0.0122 -2.3065 0.0215
mutability_factor1:construct_factor1:pol_or -0.0239 0.0122 -1.9606 0.0504
Summary for the speeded trust model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0918 0.0801 0.4933 7.8405 0 7 -388.46 794.92 833.726 132.142 543 551
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of pol_or when construct_factor = identity: 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.05   0.02     3.14   0.00
## 
## Slope of pol_or when construct_factor = behavior: 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.11   0.02     6.24   0.00
##  mutability_factor construct_factor pol_or.trend     SE  df lower.CL upper.CL
##  fluid             behavior               0.0976 0.0247 543   0.0490   0.1461
##  stable            behavior               0.1215 0.0249 543   0.0725   0.1705
##  fluid             identity               0.0892 0.0239 543   0.0422   0.1361
##  stable            identity               0.0174 0.0240 543  -0.0297   0.0646
## 
## Confidence level used: 0.95

Trust survey

From preregistration:

“Again, for each of the other dependent variables, we will also fit an individual linear regression model including mutability (fluidity vs stability), construct (identity vs behavior), participant political orientation, and each of the interaction terms between the three as predictors. If we find that any of the interaction terms are significant for any of the models, we will conduct analyses for that model to probe the interaction.”

Estimates for the trust survey model
term estimate std.error statistic p.value
(Intercept) 5.2150 0.0835 62.4533 0.0000
mutability_factor1 0.0133 0.0835 0.1597 0.8732
construct_factor1 -0.0950 0.0835 -1.1371 0.2560
pol_or -0.0588 0.0226 -2.6061 0.0094
mutability_factor1:construct_factor1 0.0585 0.0835 0.7000 0.4842
mutability_factor1:pol_or 0.0058 0.0226 0.2582 0.7964
construct_factor1:pol_or 0.0598 0.0226 2.6509 0.0083
mutability_factor1:construct_factor1:pol_or -0.0162 0.0226 -0.7181 0.4730
Summary for the trust survey model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0378 0.0255 0.915 3.0701 0.0035 7 -734.171 1486.34 1525.21 457.946 547 555
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of pol_or when construct_factor = identity: 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.00   0.03     0.03   0.97
## 
## Slope of pol_or when construct_factor = behavior: 
## 
##    Est.   S.E.   t val.      p
## ------- ------ -------- ------
##   -0.12   0.03    -3.66   0.00

Authenticity

Estimates for the authenticity model
term estimate std.error statistic p.value
(Intercept) 5.6732 0.0941 60.2856 0.0000
mutability_factor1 0.1655 0.0941 1.7591 0.0791
construct_factor1 -0.1706 0.0941 -1.8129 0.0704
pol_or -0.1051 0.0254 -4.1295 0.0000
mutability_factor1:construct_factor1 0.0922 0.0941 0.9803 0.3274
mutability_factor1:pol_or 0.0008 0.0254 0.0308 0.9755
construct_factor1:pol_or 0.0723 0.0254 2.8402 0.0047
mutability_factor1:construct_factor1:pol_or -0.0450 0.0254 -1.7679 0.0776
Summary for the authenticity model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0772 0.0654 1.0312 6.5397 0 7 -800.512 1619.02 1657.9 581.622 547 555
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of pol_or when construct_factor = identity: 
## 
##    Est.   S.E.   t val.      p
## ------- ------ -------- ------
##   -0.03   0.04    -0.93   0.35
## 
## Slope of pol_or when construct_factor = behavior: 
## 
##    Est.   S.E.   t val.      p
## ------- ------ -------- ------
##   -0.18   0.04    -4.85   0.00

Post-race Ideology

From preregistration:

“Lastly, we will collect data on an exploratory measure of participants’ endorsement of a Multiracial postrace ideology through five-items. Participants will respond to statements such as, “Race in the United States will stop mattering when everyone is mixed”, “In the future, everyone in the US will be Multiracial”, and “When most people are Multiracial, race will not matter” using a scale of 1 (strongly disagree) to 7 (strongly agree). This measure will be used to conduct exploratory correlational and moderation analyses.”

Are there differences by condition?

Descriptive stats by mutability
mutability_factor min q1 median mean q3 max
fluid 1 2.25 3.6 3.54 4.6 7
stable 1 2.2 3.4 3.407 4.4 7
Descriptive stats by construct
construct_factor min q1 median mean q3 max
behavior 1 2.2 3.4 3.363 4.4 7
identity 1 2.4 3.6 3.588 4.6 7
Descriptive stats by mutability & construct
mutability_factor construct_factor min q1 median mean q3 max
fluid behavior 1 2 3.4 3.359 4.4 7
fluid identity 1 2.6 3.8 3.714 4.8 7
stable behavior 1 2.25 3.4 3.366 4.2 6.6
stable identity 1 2.2 3.2 3.45 4.6 7
ANOVA – explicit trust by condition
Sum Sq Df F value Pr(>F)
(Intercept) 6683.4533 1 3004.4972 0.0000
mutability_factor 2.2833 1 1.0264 0.3114
construct_factor 6.6657 1 2.9965 0.0840
mutability_factor:construct_factor 2.5307 1 1.1377 0.2866
Residuals 1225.6902 551 NA NA
ANOVA – explicit trust by condition
eta.sq eta.sq.part
mutability_factor 0.0018 0.0019
construct_factor 0.0054 0.0054
mutability_factor:construct_factor 0.0020 0.0021

Is Post race ideology a moderator?

Speeded trust task

Estimates for the speeded trust model
term estimate std.error statistic p.value
(Intercept) 0.1857 0.0554 3.3518 0.0009
mutability_factor1 0.0105 0.0554 0.1896 0.8497
construct_factor1 -0.1563 0.0554 -2.8200 0.0050
postrace -0.0331 0.0147 -2.2502 0.0248
mutability_factor1:construct_factor1 0.0824 0.0554 1.4874 0.1375
mutability_factor1:postrace -0.0049 0.0147 -0.3351 0.7377
construct_factor1:postrace 0.0403 0.0147 2.7417 0.0063
mutability_factor1:construct_factor1:postrace -0.0209 0.0147 -1.4238 0.1551
Summary for the speeded trust model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0292 0.0167 0.51 2.3335 0.0236 7 -406.821 831.643 870.448 141.249 543 551
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of postrace when construct_factor = identity: 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.01   0.02     0.36   0.72
## 
## Slope of postrace when construct_factor = behavior: 
## 
##    Est.   S.E.   t val.      p
## ------- ------ -------- ------
##   -0.07   0.02    -3.45   0.00

Trust survey

Estimates for the trust survey model
term estimate std.error statistic p.value
(Intercept) 4.6358 0.0986 47.0329 0.0000
mutability_factor1 -0.0091 0.0986 -0.0919 0.9268
construct_factor1 0.1707 0.0986 1.7317 0.0839
postrace 0.1123 0.0261 4.2964 0.0000
mutability_factor1:construct_factor1 -0.0823 0.0986 -0.8347 0.4042
mutability_factor1:postrace 0.0124 0.0261 0.4742 0.6355
construct_factor1:postrace -0.0225 0.0261 -0.8623 0.3889
mutability_factor1:construct_factor1:postrace 0.0271 0.0261 1.0350 0.3011
Summary for the trust survey model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0492 0.037 0.9095 4.0439 0.0002 7 -730.863 1479.73 1518.6 452.52 547 555

Authenticity

Estimates for the authenticity model
term estimate std.error statistic p.value
(Intercept) 4.9458 0.113 43.7561 0.0000
mutability_factor1 0.1659 0.113 1.4679 0.1427
construct_factor1 0.1140 0.113 1.0086 0.3136
postrace 0.1107 0.030 3.6913 0.0002
mutability_factor1:construct_factor1 -0.1147 0.113 -1.0150 0.3106
mutability_factor1:postrace 0.0012 0.030 0.0411 0.9672
construct_factor1:postrace -0.0165 0.030 -0.5501 0.5825
mutability_factor1:construct_factor1:postrace 0.0195 0.030 0.6518 0.5148
Summary for the authenticity model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0558 0.0438 1.043 4.6218 0 7 -806.869 1631.74 1670.61 595.099 547 555

Non-preregistered Analyses

Correlations between main variables

row column n cor p
whitemulti_trust_dif White 551 0.45848184 0.00000000000000000000
whitemulti_trust_dif Multiracial 551 -0.38058336 0.00000000000000000000
White Multiracial 551 0.64733525 0.00000000000000000000
whitemulti_trust_dif Black 551 -0.50337912 0.00000000000000000000
White Black 551 0.32218904 0.00000000000000888178
Multiracial Black 551 0.76698392 0.00000000000000000000
whitemulti_trust_dif trust_survey 551 -0.16887654 0.00006783619507322314
White trust_survey 551 0.21411268 0.00000039058487977250
Multiracial trust_survey 551 0.36763497 0.00000000000000000000
Black trust_survey 551 0.43095887 0.00000000000000000000
whitemulti_trust_dif authen 551 -0.16658616 0.00008531841267611640
White authen 551 0.16824080 0.00007231570869992154
Multiracial authen 551 0.31793832 0.00000000000002087219
Black authen 551 0.37689700 0.00000000000000000000
trust_survey authen 555 0.64834522 0.00000000000000000000
whitemulti_trust_dif fluidity 551 -0.06770445 0.11240720349471611250
White fluidity 551 -0.05309913 0.21332886096330305747
Multiracial fluidity 551 0.00281473 0.94744044788595638273
Black fluidity 551 0.00387784 0.92763596858187602479
trust_survey fluidity 555 -0.10336268 0.01484652689285281824
authen fluidity 555 -0.17378437 0.00003851379890695839
whitemulti_trust_dif fluidity_should 551 -0.23197327 0.00000003626398226153
White fluidity_should 551 0.00922448 0.82895453319591383412
Multiracial fluidity_should 551 0.20855271 0.00000078633463695965
Black fluidity_should 551 0.27425132 0.00000000005793654445
trust_survey fluidity_should 555 0.24085464 0.00000000912876796377
authen fluidity_should 555 0.22459107 0.00000008915283800093
fluidity fluidity_should 555 0.46754538 0.00000000000000000000
whitemulti_trust_dif postrace 551 -0.09554920 0.02490301824898422112
White postrace 551 0.13964797 0.00101374048500124658
Multiracial postrace 551 0.22726032 0.00000006922125539432
Black postrace 551 0.17971238 0.00002200852398681619
trust_survey postrace 555 0.18524912 0.00001120987564107168
authen postrace 555 0.15414332 0.00026739668534769834
fluidity postrace 555 0.09393844 0.02690117808265179988
fluidity_should postrace 555 0.21222232 0.00000045128981129849
whitemulti_trust_dif race_ess 551 0.24257521 0.00000000804598787596
White race_ess 551 0.01049450 0.80584572191431513843
Multiracial race_ess 551 -0.19712686 0.00000312309128425170
Black race_ess 551 -0.27370662 0.00000000006342326664
trust_survey race_ess 555 -0.16324046 0.00011202081478001169
authen race_ess 555 -0.19228869 0.00000505595695354799
fluidity race_ess 555 -0.17503792 0.00003377794652226207
fluidity_should race_ess 555 -0.40120265 0.00000000000000000000
postrace race_ess 555 -0.17966455 0.00002064787275091184
whitemulti_trust_dif pol_or 551 0.27016736 0.00000000011361933616
White pol_or 551 0.15737114 0.00020826089977843409
Multiracial pol_or 551 -0.06795806 0.11106469505924843055
Black pol_or 551 -0.25294587 0.00000000172043512769
trust_survey pol_or 555 -0.10743068 0.01132440191734174206
authen pol_or 555 -0.16455869 0.00009836644044103338
fluidity pol_or 555 -0.09854414 0.02023477496743963933
fluidity_should pol_or 555 -0.32266186 0.00000000000000666134
postrace pol_or 555 -0.03017405 0.47806870203444407075
race_ess pol_or 555 0.27276876 0.00000000006324629709
whitemulti_trust_dif age 551 -0.10171739 0.01692065638597539667
White age 551 0.12638395 0.00296013849776466387
Multiracial age 551 0.21874857 0.00000021480468914703
Black age 551 0.09644342 0.02357458215136709612
trust_survey age 555 0.03678269 0.38710367946484636192
authen age 555 0.10541372 0.01296571063067974983
fluidity age 555 -0.05375253 0.20609197680683877252
fluidity_should age 555 0.08169092 0.05443144973533886599
postrace age 555 0.08038185 0.05842911319980825802
race_ess age 555 -0.11426656 0.00704512572134730064
pol_or age 555 -0.00105727 0.98017336051678816133

Main Analyses Again with White Participants ONLY

GEE Model for Speeded Trust Task

From preregistration:

For the speeded trust task, we will fit a GEE regression model with trustworthiness ratings for each target face as the outcome and target race (within subjects—will be dummy coded with White as the comparison group), mutability (fluidity vs stability), and construct (identity vs behavior), and each of the interaction terms between the three as predictors.  

Findings:

NOTE: Don’t look at these p-values! They are not p-values

Estimates for the speeded trust model
term estimate std.error statistic p.value NA
(Intercept) 3.1655 0.0094 335.3228 0.0327 96.7600
mutability_factor1 0.0201 0.0094 2.1242 0.0327 0.6129
construct_factor1 0.0490 0.0094 5.1918 0.0327 1.4981
race_multi -0.0967 0.0134 -7.2436 0.0289 -3.3504
race_black -0.0191 0.0134 -1.4271 0.0421 -0.4525
mutability_factor1:construct_factor1 0.0113 0.0094 1.1977 0.0327 0.3456
mutability_factor1:race_multi 0.0138 0.0134 1.0331 0.0289 0.4778
construct_factor1:race_multi 0.0007 0.0134 0.0522 0.0289 0.0241
mutability_factor1:race_black 0.0316 0.0134 2.3644 0.0421 0.7496
construct_factor1:race_black -0.0058 0.0134 -0.4323 0.0421 -0.1371
mutability_factor1:construct_factor1:race_multi -0.0289 0.0134 -2.1617 0.0289 -0.9999
mutability_factor1:construct_factor1:race_black 0.0005 0.0134 0.0402 0.0421 0.0127

THESE ARE THE P-VALUES

##                                     (Intercept) 
##                                     0.000000000 
##                              mutability_factor1 
##                                     0.539911898 
##                               construct_factor1 
##                                     0.134097381 
##                                      race_multi 
##                                     0.000807063 
##                                      race_black 
##                                     0.650939729 
##            mutability_factor1:construct_factor1 
##                                     0.729645095 
##                   mutability_factor1:race_multi 
##                                     0.632768676 
##                    construct_factor1:race_multi 
##                                     0.980736317 
##                   mutability_factor1:race_black 
##                                     0.453481782 
##                    construct_factor1:race_black 
##                                     0.890976147 
## mutability_factor1:construct_factor1:race_multi 
##                                     0.317380866 
## mutability_factor1:construct_factor1:race_black 
##                                     0.989835521
Emmeans for condition * race_multi
mutability_factor construct_factor race_multi emmean SE df asymp.LCL asymp.UCL
fluid behavior 0 3.0856 0.0621 Inf 2.9639 3.2073
stable behavior 0 3.1341 0.0476 Inf 3.0409 3.2274
fluid identity 0 3.1547 0.0523 Inf 3.0523 3.2571
stable identity 0 3.2495 0.0617 Inf 3.1286 3.3704
fluid behavior 1 2.9455 0.1032 Inf 2.7432 3.1479
stable behavior 1 3.0794 0.0778 Inf 2.9268 3.2319
fluid identity 1 3.0738 0.0699 Inf 2.9367 3.2109
stable identity 1 3.1384 0.0805 Inf 2.9806 3.2963
Emmeans for condition * race_black
mutability_factor construct_factor race_black emmean SE df asymp.LCL asymp.UCL
fluid behavior 0 3.0377 0.0595 Inf 2.9210 3.1544
stable behavior 0 3.0979 0.0496 Inf 3.0006 3.1951
fluid identity 0 3.1427 0.0566 Inf 3.0318 3.2536
stable identity 0 3.1903 0.0640 Inf 3.0649 3.3158
fluid behavior 1 2.9934 0.1154 Inf 2.7673 3.2196
stable behavior 1 3.1156 0.0862 Inf 2.9467 3.2845
fluid identity 1 3.0858 0.0809 Inf 2.9273 3.2442
stable identity 1 3.1976 0.0877 Inf 3.0257 3.3695

ANOVAs for Explicit Trust and Authenticity

From preregistration:

For each of the two other dependent variables (trust survey, authenticity scale), we will run a two-way analysis of variance to determine if there is any difference between participants who read the fluidity article and participants who read the stability article in the behavior vs identity conditions. We will use pairwise comparisons to test for differences by condition.   

Trust Survey

Findings:

Descriptive stats by mutability
mutability_factor min q1 median mean q3 max
fluid 1.6 4 5.3 5.097 5.8 6.8
stable 1.7 4.3 5.2 5.117 5.8 7
Descriptive stats by construct
construct_factor min q1 median mean q3 max
behavior 1.6 4 5.1 5.032 5.7 6.8
identity 1.7 4.4 5.4 5.183 5.8 7
Descriptive stats by mutability & construct
mutability_factor construct_factor min q1 median mean q3 max
fluid behavior 1.6 4 5.2 5.019 5.8 6.8
fluid identity 2.7 4.4 5.4 5.161 5.8 6.6
stable behavior 3.2 4.3 5.1 5.043 5.6 6.7
stable identity 1.7 4.375 5.35 5.211 6 7
ANOVA – explicit trust by condition
Sum Sq Df F value Pr(>F)
(Intercept) 9445.5932 1 11051.5574 0.0000
mutability_factor 0.1218 1 0.1426 0.7060
construct_factor 2.1881 1 2.5602 0.1105
mutability_factor:construct_factor 0.0157 1 0.0184 0.8923
Residuals 309.3957 362 NA NA
ANOVA – explicit trust by condition
eta.sq eta.sq.part
mutability_factor 0.0004 0.0004
construct_factor 0.0070 0.0070
mutability_factor:construct_factor 0.0001 0.0001

Authenticity

Findings:

Descriptive stats by mutability
mutability_factor min q1 median mean q3 max
fluid 1 4.5 5.25 5.304 6 7
stable 1 5 5.75 5.55 6.25 7
Descriptive stats by construct
construct_factor min q1 median mean q3 max
behavior 1 4.75 5.5 5.384 6 7
identity 1 4.75 5.5 5.468 6.25 7
Descriptive stats by mutability & construct
mutability_factor construct_factor min q1 median mean q3 max
fluid behavior 1 4.5 5.25 5.199 6 7
fluid identity 2.75 4.75 5.25 5.391 6 7
stable behavior 2.5 5 5.75 5.537 6 7
stable identity 1 5 5.75 5.566 6.562 7
ANOVA – authenticity by condition
Sum Sq Df F value Pr(>F)
(Intercept) 10645.3669 1 9742.6711 0.0000
mutability_factor 5.9360 1 5.4326 0.0203
construct_factor 1.0967 1 1.0037 0.3171
mutability_factor:construct_factor 0.6024 1 0.5513 0.4583
Residuals 395.5407 362 NA NA
ANOVA – authenticity by condition
eta.sq eta.sq.part
mutability_factor 0.0147 0.0148
construct_factor 0.0027 0.0028
mutability_factor:construct_factor 0.0015 0.0015

Is participant age a moderator?

Speeded trust task

Estimates for the speeded trust model
term estimate std.error statistic p.value
(Intercept) 0.2232 0.0681 3.2791 0.0011
mutability_factor1 0.0498 0.0681 0.7316 0.4647
construct_factor1 -0.0738 0.0681 -1.0842 0.2787
age -0.0038 0.0017 -2.2765 0.0232
mutability_factor1:construct_factor1 0.0123 0.0681 0.1809 0.8565
mutability_factor1:age -0.0015 0.0017 -0.9062 0.3652
construct_factor1:age 0.0015 0.0017 0.8693 0.3851
mutability_factor1:construct_factor1:age -0.0001 0.0017 -0.0828 0.9341
Summary for the speeded trust model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0151 0.0024 0.5137 1.1926 0.305 7 -410.783 839.567 878.372 143.295 543 551

Trust survey

Estimates for the trust survey model
term estimate std.error statistic p.value
(Intercept) 4.9349 0.1223 40.3387 0.0000
mutability_factor1 -0.1190 0.1223 -0.9727 0.3311
construct_factor1 0.1678 0.1223 1.3720 0.1706
age 0.0023 0.0030 0.7505 0.4533
mutability_factor1:construct_factor1 -0.0220 0.1223 -0.1796 0.8576
mutability_factor1:age 0.0039 0.0030 1.2806 0.2009
construct_factor1:age -0.0017 0.0030 -0.5468 0.5847
mutability_factor1:construct_factor1:age 0.0008 0.0030 0.2505 0.8023
Summary for the trust survey model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0182 0.0056 0.9243 1.4487 0.1833 7 -739.767 1497.53 1536.4 467.275 547 555

Authenticity

Estimates for the authenticity model
term estimate std.error statistic p.value
(Intercept) 5.0167 0.1391 36.0676 0.0000
mutability_factor1 0.1024 0.1391 0.7364 0.4618
construct_factor1 0.1332 0.1391 0.9579 0.3385
age 0.0081 0.0034 2.3546 0.0189
mutability_factor1:construct_factor1 -0.0443 0.1391 -0.3182 0.7504
mutability_factor1:age 0.0016 0.0034 0.4753 0.6348
construct_factor1:age -0.0018 0.0034 -0.5119 0.6089
mutability_factor1:construct_factor1:age -0.0001 0.0034 -0.0241 0.9808
Summary for the authenticity model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0417 0.0294 1.0508 3.3995 0.0015 7 -810.998 1640 1678.87 604.02 547 555

Is participant gender a moderator?

Participant gender
Man Woman Non-binary
209 335 11

Speeded trust task

Descriptive stats by participant race
gender_factor min q1 median mean q3 max
Man -1.575 -0.05 0.125 0.2273 0.4625 2.975
Woman -2.225 -0.175 0 -0.007754 0.225 2.675
Non-binary -0.75 -0.375 -0.075 -0.1841 0 0.2
Descriptive stats by mutability (continued below)
mutability_factor gender_factor min q1 median mean
fluid Man -1.575 -0.05 0.125 0.2326
fluid Woman -1.6 -0.2125 0 0.002166
fluid Non-binary -0.75 -0.4312 -0.0375 -0.1906
stable Man -1.2 -0.05 0.125 0.2214
stable Woman -2.225 -0.175 0 -0.01738
stable Non-binary -0.35 -0.25 -0.15 -0.1667
q3 max
0.475 2.375
0.2313 2.675
0.00625 0.2
0.425 2.975
0.2 1.1
-0.075 0
Descriptive stats by construct (continued below)
construct_factor gender_factor min q1 median mean
behavior Man -1.575 0 0.15 0.2355
behavior Woman -2.225 -0.175 0 0.0009587
behavior Non-binary -0.15 -0.1125 -0.075 -0.075
identity Man -1.05 -0.1 0.075 0.2176
identity Woman -1.275 -0.2 0 -0.01601
identity Non-binary -0.75 -0.4312 -0.175 -0.225
q3 max
0.4313 2.875
0.2188 2.675
-0.0375 0
0.475 2.975
0.225 1.25
0.00625 0.2
Descriptive stats by mutability & construct (continued below)
mutability_factor construct_factor gender_factor min q1
fluid behavior Man -1.575 -0.025
fluid behavior Woman -1.6 -0.175
fluid behavior Non-binary -0.075 -0.075
fluid identity Man -1.05 -0.075
fluid identity Woman -1.275 -0.3062
fluid identity Non-binary -0.75 -0.4625
stable behavior Man -1.2 0
stable behavior Woman -2.225 -0.175
stable behavior Non-binary -0.15 -0.1125
stable identity Man -0.4 -0.125
stable identity Woman -1.25 -0.125
stable identity Non-binary -0.35 -0.35
median mean q3 max
0.125 0.2263 0.3812 2.375
0 0.03788 0.1875 2.675
-0.075 -0.075 -0.075 -0.075
0.125 0.2392 0.525 1.6
0 -0.03185 0.2562 1.25
0 -0.2071 0.0125 0.2
0.175 0.2446 0.475 2.875
-0.025 -0.03506 0.2375 1.1
-0.075 -0.075 -0.0375 0
0 0.1905 0.4187 2.975
0 -0.0007184 0.175 0.7
-0.35 -0.35 -0.35 -0.35
Estimates for the speeded trust model
term estimate std.error statistic p.value
(Intercept) 0.0136 0.0700 0.1950 0.8455
mutability_factor1 -0.0179 0.0700 -0.2561 0.7980
construct_factor1 -0.0403 0.0700 -0.5762 0.5647
gender_factor1 -0.1163 0.0224 -5.1840 0.0000
gender_factor2 -0.0952 0.0688 -1.3845 0.1668
mutability_factor1:construct_factor1 -0.0088 0.0700 -0.1260 0.8998
mutability_factor1:gender_factor1 -0.0014 0.0224 -0.0638 0.9492
mutability_factor1:gender_factor2 -0.0089 0.0688 -0.1294 0.8971
construct_factor1:gender_factor1 0.0007 0.0224 0.0333 0.9735
construct_factor1:gender_factor2 -0.0307 0.0688 -0.4469 0.6552
mutability_factor1:construct_factor1:gender_factor1 0.0214 0.0224 0.9531 0.3410
mutability_factor1:construct_factor1:gender_factor2 -0.0135 0.0688 -0.1956 0.8450
Summary for the speeded trust model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0567 0.0374 0.5046 2.9442 0.0008 11 -398.912 823.823 879.876 137.251 539 551

Trust survey

Descriptive stats by participant race
gender_factor min q1 median mean q3 max
Man 1.7 4 5 4.909 5.6 7
Woman 1.6 4 5.1 5.081 5.7 7
Non-binary 4 4.4 5.1 5.218 6 6.7
Descriptive stats by mutability
mutability_factor gender_factor min q1 median mean q3 max
fluid Man 1.9 4 5 4.94 5.6 7
fluid Woman 1.6 4 5.1 5.015 5.8 6.6
fluid Non-binary 4 4.45 5.2 5.213 5.8 6.7
stable Man 1.7 4 5 4.875 5.6 7
stable Woman 3.4 4.4 5.3 5.144 5.7 7
stable Non-binary 4.2 4.6 5 5.233 5.75 6.5
Descriptive stats by construct
construct_factor gender_factor min q1 median mean q3 max
behavior Man 1.9 4 4.7 4.748 5.4 7
behavior Woman 1.6 4 5 5.016 5.7 6.7
behavior Non-binary 5 5.75 6.5 6.067 6.6 6.7
identity Man 1.7 4.15 5.2 5.099 5.8 7
identity Woman 2.7 4.05 5.3 5.144 5.8 7
identity Non-binary 4 4.15 4.85 4.9 5.375 6.4
Descriptive stats by mutability & construct (continued below)
mutability_factor construct_factor gender_factor min q1 median
fluid behavior Man 1.9 4 4.7
fluid behavior Woman 1.6 4 4.9
fluid behavior Non-binary 6.7 6.7 6.7
fluid identity Man 3.4 4.2 5.3
fluid identity Woman 2.7 4.075 5.2
fluid identity Non-binary 4 4.3 5.1
stable behavior Man 2.4 4 4.75
stable behavior Woman 3.4 4.4 5.1
stable behavior Non-binary 5 5.375 5.75
stable identity Man 1.7 4.15 5.1
stable identity Woman 3.7 4.2 5.3
stable identity Non-binary 4.2 4.2 4.2
mean q3 max
4.795 5.6 7
4.942 5.725 6.5
6.7 6.7 6.7
5.096 5.7 6.7
5.085 5.8 6.6
5 5.45 6.4
4.7 5.2 6.4
5.086 5.6 6.7
5.75 6.125 6.5
5.102 5.9 7
5.201 5.8 7
4.2 4.2 4.2
Estimates for the trust survey model
term estimate std.error statistic p.value
(Intercept) 5.1381 0.1273 40.3465 0.0000
mutability_factor1 -0.1316 0.1273 -1.0331 0.3020
construct_factor1 -0.1907 0.1273 -1.4977 0.1348
gender_factor1 0.0776 0.0406 1.9086 0.0568
gender_factor2 0.1372 0.1252 1.0961 0.2735
mutability_factor1:construct_factor1 0.0187 0.1273 0.1467 0.8834
mutability_factor1:gender_factor1 0.0436 0.0406 1.0717 0.2843
mutability_factor1:gender_factor2 -0.1530 0.1252 -1.2221 0.2222
construct_factor1:gender_factor1 -0.0558 0.0406 -1.3727 0.1704
construct_factor1:gender_factor2 -0.3109 0.1252 -2.4837 0.0133
mutability_factor1:construct_factor1:gender_factor1 -0.0159 0.0406 -0.3919 0.6953
mutability_factor1:construct_factor1:gender_factor2 0.0094 0.1252 0.0751 0.9401
Summary for the trust survey model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0375 0.018 0.9185 1.9221 0.0343 11 -734.264 1494.53 1550.68 458.101 543 555

Authenticity

Descriptive stats by participant race
gender_factor min q1 median mean q3 max
Man 1 4.5 5.25 5.169 6 7
Woman 2.25 4.75 5.5 5.428 6 7
Non-binary 3.75 4.625 5.25 5.182 5.875 6.5
Descriptive stats by mutability
mutability_factor gender_factor min q1 median mean q3 max
fluid Man 1 4.5 5 5.052 5.75 7
fluid Woman 2.25 4.5 5.25 5.242 6 7
fluid Non-binary 3.75 4.375 5 5.062 5.812 6.5
stable Man 1 4.5 5.5 5.298 6 7
stable Woman 2.75 5 5.75 5.605 6.25 7
stable Non-binary 4.75 5.25 5.75 5.5 5.875 6
Descriptive stats by construct
construct_factor gender_factor min q1 median mean q3 max
behavior Man 1 4.5 5 5.077 6 7
behavior Woman 2.25 4.688 5.5 5.386 6 7
behavior Non-binary 4.75 5.25 5.75 5.5 5.875 6
identity Man 1 4.688 5.25 5.276 6 7
identity Woman 2.75 4.75 5.5 5.468 6.125 7
identity Non-binary 3.75 4.375 5 5.062 5.812 6.5
Descriptive stats by mutability & construct (continued below)
mutability_factor construct_factor gender_factor min q1 median
fluid behavior Man 1 4.25 4.75
fluid behavior Woman 2.25 4.438 5.25
fluid behavior Non-binary 5.75 5.75 5.75
fluid identity Man 3.75 4.75 5.25
fluid identity Woman 2.75 4.688 5.25
fluid identity Non-binary 3.75 4.25 4.75
stable behavior Man 2.25 4.5 5.375
stable behavior Woman 2.75 5 5.875
stable behavior Non-binary 4.75 5.062 5.375
stable identity Man 1 4.5 5.5
stable identity Woman 3 5 5.75
stable identity Non-binary 5.75 5.75 5.75
mean q3 max
4.886 5.75 7
5.141 6 7
5.75 5.75 5.75
5.231 5.75 7
5.339 6 7
4.964 5.625 6.5
5.272 6 7
5.619 6.25 7
5.375 5.688 6
5.331 6 7
5.592 6.25 7
5.75 5.75 5.75
Estimates for the authenticity model
term estimate std.error statistic p.value
(Intercept) 5.3543 0.1459 36.7003 0.0000
mutability_factor1 0.1357 0.1459 0.9302 0.3527
construct_factor1 0.0138 0.1459 0.0943 0.9249
gender_factor1 0.1213 0.0466 2.6042 0.0095
gender_factor2 0.0528 0.1434 0.3681 0.7129
mutability_factor1:construct_factor1 0.0541 0.1459 0.3706 0.7111
mutability_factor1:gender_factor1 0.0306 0.0466 0.6563 0.5119
mutability_factor1:gender_factor2 -0.0165 0.1434 -0.1152 0.9084
construct_factor1:gender_factor1 -0.0291 0.0466 -0.6246 0.5325
construct_factor1:gender_factor2 -0.0582 0.1434 -0.4060 0.6849
mutability_factor1:construct_factor1:gender_factor1 0.0075 0.0466 0.1620 0.8714
mutability_factor1:construct_factor1:gender_factor2 0.1181 0.1434 0.8233 0.4107
Summary for the authenticity model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0461 0.0268 1.0522 2.3883 0.0068 11 -809.704 1645.41 1701.55 601.209 543 555

Is there an effect of target gender in the implicit trust task?

NOTE: Don’t look at these p-values! They are not p-values

Estimates for the speeded trust model
term estimate std.error statistic p.value NA
(Intercept) 3.1009 0.0074 419.8940 0.0270 114.8250
mutability_factor1 0.0294 0.0074 3.9849 0.0270 1.0897
construct_factor1 0.0312 0.0074 4.2217 0.0270 1.1545
race_multi -0.0764 0.0104 -7.3143 0.0217 -3.5181
gender1 -0.3681 0.0074 -49.8461 0.0156 -23.6720
race_black 0.0122 0.0104 1.1636 0.0322 0.3775
mutability_factor1:construct_factor1 -0.0079 0.0074 -1.0712 0.0270 -0.2929
mutability_factor1:race_multi 0.0105 0.0104 1.0037 0.0217 0.4828
construct_factor1:race_multi 0.0186 0.0104 1.7856 0.0217 0.8589
mutability_factor1:gender1 -0.0395 0.0074 -5.3432 0.0156 -2.5375
construct_factor1:gender1 -0.0010 0.0074 -0.1350 0.0156 -0.0641
race_multi:gender1 0.1481 0.0104 14.1798 0.0129 11.4958
mutability_factor1:race_black 0.0244 0.0104 2.3344 0.0322 0.7573
construct_factor1:race_black 0.0250 0.0104 2.3907 0.0322 0.7755
gender1:race_black 0.1278 0.0104 12.2399 0.0133 9.5918
mutability_factor1:construct_factor1:race_multi -0.0088 0.0104 -0.8472 0.0217 -0.4075
mutability_factor1:construct_factor1:gender1 0.0275 0.0074 3.7190 0.0156 1.7662
mutability_factor1:race_multi:gender1 0.0065 0.0104 0.6250 0.0129 0.5067
construct_factor1:race_multi:gender1 -0.0004 0.0104 -0.0413 0.0129 -0.0335
mutability_factor1:construct_factor1:race_black 0.0013 0.0104 0.1228 0.0322 0.0398
mutability_factor1:gender1:race_black 0.0082 0.0104 0.7807 0.0133 0.6118
construct_factor1:gender1:race_black -0.0183 0.0104 -1.7487 0.0133 -1.3704
mutability_factor1:construct_factor1:race_multi:gender1 -0.0214 0.0104 -2.0457 0.0129 -1.6585
mutability_factor1:construct_factor1:gender1:race_black -0.0152 0.0104 -1.4598 0.0133 -1.1440

THESE ARE THE P-VALUES

##                                                                                                                         (Intercept) 
## 0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 
##                                                                                                                  mutability_factor1 
## 0.275840851290069410950422934547532349824905395507812500000000000000000000000000000000000000000000000000000000000000000000000000000 
##                                                                                                                   construct_factor1 
## 0.248305211071214670948137381856213323771953582763671875000000000000000000000000000000000000000000000000000000000000000000000000000 
##                                                                                                                          race_multi 
## 0.000434620337445140389204950581714115287468302994966506958007812500000000000000000000000000000000000000000000000000000000000000000 
##                                                                                                                             gender1 
## 0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000701234 
##                                                                                                                          race_black 
## 0.705829842123826045607870582898613065481185913085937500000000000000000000000000000000000000000000000000000000000000000000000000000 
##                                                                                                mutability_factor1:construct_factor1 
## 0.769581853883096966839616470679175108671188354492187500000000000000000000000000000000000000000000000000000000000000000000000000000 
##                                                                                                       mutability_factor1:race_multi 
## 0.629272461006990857512732873146887868642807006835937500000000000000000000000000000000000000000000000000000000000000000000000000000 
##                                                                                                        construct_factor1:race_multi 
## 0.390404636351615375033929922210518270730972290039062500000000000000000000000000000000000000000000000000000000000000000000000000000 
##                                                                                                          mutability_factor1:gender1 
## 0.011165619976099759938503730438696948112919926643371582031250000000000000000000000000000000000000000000000000000000000000000000000 
##                                                                                                           construct_factor1:gender1 
## 0.948871036227960762410305051162140443921089172363281250000000000000000000000000000000000000000000000000000000000000000000000000000 
##                                                                                                                  race_multi:gender1 
## 0.000000000000000000000000000001384461736154860818240066465440227760315654945915115446864319350716580188773348076419766883304873772 
##                                                                                                       mutability_factor1:race_black 
## 0.448894704744025541121033029412501491606235504150390625000000000000000000000000000000000000000000000000000000000000000000000000000 
##                                                                                                        construct_factor1:race_black 
## 0.438044046084215876746270623698364943265914916992187500000000000000000000000000000000000000000000000000000000000000000000000000000 
##                                                                                                                  gender1:race_black 
## 0.000000000000000000000865382746886544167189056128375802996519080851188968943945309733600801394004520261660218238830566406250000000 
##                                                                                     mutability_factor1:construct_factor1:race_multi 
## 0.683644481126140401983093397575430572032928466796875000000000000000000000000000000000000000000000000000000000000000000000000000000 
##                                                                                        mutability_factor1:construct_factor1:gender1 
## 0.077368722699506980999828442691068630665540695190429687500000000000000000000000000000000000000000000000000000000000000000000000000 
##                                                                                               mutability_factor1:race_multi:gender1 
## 0.612367565430561922035224142746301367878913879394531250000000000000000000000000000000000000000000000000000000000000000000000000000 
##                                                                                                construct_factor1:race_multi:gender1 
## 0.973264484622566539151478082203539088368415832519531250000000000000000000000000000000000000000000000000000000000000000000000000000 
##                                                                                     mutability_factor1:construct_factor1:race_black 
## 0.968232414288818787895252171438187360763549804687500000000000000000000000000000000000000000000000000000000000000000000000000000000 
##                                                                                               mutability_factor1:gender1:race_black 
## 0.540654264840789933188602844893466681241989135742187500000000000000000000000000000000000000000000000000000000000000000000000000000 
##                                                                                                construct_factor1:gender1:race_black 
## 0.170567804338139950015573731434415094554424285888671875000000000000000000000000000000000000000000000000000000000000000000000000000 
##                                                                             mutability_factor1:construct_factor1:race_multi:gender1 
## 0.097219918539417735092733607871195999905467033386230468750000000000000000000000000000000000000000000000000000000000000000000000000 
##                                                                             mutability_factor1:construct_factor1:gender1:race_black 
## 0.252619320617645304327680833011982031166553497314453125000000000000000000000000000000000000000000000000000000000000000000000000000
Emmeans for gender
gender emmean SE df asymp.LCL asymp.UCL
female 3.2990 0.0275 Inf 3.2452 3.3528
male 2.8387 0.0287 Inf 2.7823 2.8950
Emmeans for race multi
race_multi emmean SE df asymp.LCL asymp.UCL
0 3.1070 0.0233 Inf 3.0614 3.1526
1 3.0306 0.0326 Inf 2.9667 3.0945
Emmeans
mutability_factor gender emmean SE df asymp.LCL asymp.UCL
fluid female 3.2200 0.0387 Inf 3.1441 3.2958
stable female 3.3779 0.0390 Inf 3.3016 3.4543
fluid male 2.8239 0.0395 Inf 2.7465 2.9014
stable male 2.8534 0.0417 Inf 2.7716 2.9352
Emmeans
race_multi gender emmean SE df asymp.LCL asymp.UCL
0 female 3.4112 0.0258 Inf 3.3606 3.4618
1 female 3.1867 0.0332 Inf 3.1216 3.2518
0 male 2.8028 0.0265 Inf 2.7509 2.8547
1 male 2.8745 0.0364 Inf 2.8032 2.9458
Emmeans
race_black gender emmean SE df asymp.LCL asymp.UCL
0 female 3.3568 0.0259 Inf 3.3060 3.4076
1 female 3.2411 0.0368 Inf 3.1690 3.3132
0 male 2.7687 0.0280 Inf 2.7139 2.8235
1 male 2.9087 0.0396 Inf 2.8311 2.9862
Emmeans (this one is marginal)
mutability_factor construct_factor gender emmean SE df asymp.LCL asymp.UCL
fluid behavior female 3.1358 0.0591 Inf 3.0199 3.2517
stable behavior female 3.3355 0.0564 Inf 3.2248 3.4461
fluid identity female 3.3042 0.0499 Inf 3.2063 3.4020
stable identity female 3.4204 0.0537 Inf 3.3152 3.5257
fluid behavior male 2.7787 0.0592 Inf 2.6626 2.8949
stable behavior male 2.8133 0.0624 Inf 2.6910 2.9356
fluid identity male 2.8691 0.0523 Inf 2.7666 2.9716
stable identity male 2.8935 0.0554 Inf 2.7849 3.0021
Emmeans (this one is marginal)
mutability_factor construct_factor race_multi gender emmean SE df asymp.LCL asymp.UCL
fluid behavior 0 female 3.2533 0.0543 Inf 3.1469 3.3597
stable behavior 0 female 3.4615 0.0518 Inf 3.3599 3.5631
fluid identity 0 female 3.4151 0.0478 Inf 3.3214 3.5088
stable identity 0 female 3.5149 0.0526 Inf 3.4118 3.6180
fluid behavior 1 female 3.0183 0.0732 Inf 2.8749 3.1617
stable behavior 1 female 3.2094 0.0694 Inf 3.0734 3.3454
fluid identity 1 female 3.1932 0.0604 Inf 3.0749 3.3116
stable identity 1 female 3.3260 0.0619 Inf 3.2046 3.4473
fluid behavior 0 male 2.7756 0.0516 Inf 2.6745 2.8768
stable behavior 0 male 2.7629 0.0561 Inf 2.6529 2.8730
fluid identity 0 male 2.8175 0.0494 Inf 2.7208 2.9143
stable identity 0 male 2.8552 0.0545 Inf 2.7484 2.9620
fluid behavior 1 male 2.7819 0.0787 Inf 2.6276 2.9362
stable behavior 1 male 2.8637 0.0798 Inf 2.7073 3.0200
fluid identity 1 male 2.9207 0.0662 Inf 2.7908 3.0505
stable identity 1 male 2.9319 0.0651 Inf 2.8044 3.0594

Does authenticity mediate the relation between mutability and trust

Implicit trust

## lavaan 0.6.15 ended normally after 22 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##                                                   Used       Total
##   Number of observations                           551         555
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                                29.263
##   Degrees of freedom                                 3
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1216.013
##   Loglikelihood unrestricted model (H1)      -1216.013
##                                                       
##   Akaike (AIC)                                2446.026
##   Bayesian (BIC)                              2476.208
##   Sample-size adjusted Bayesian (SABIC)       2453.987
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                       NA
##   P-value H_0: RMSEA >= 0.080                       NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             5000
##   Number of successful bootstrap draws            5000
## 
## Regressions:
##                          Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   whitemulti_trust_dif ~                                                      
##     mtblty_fct (c)          0.009    0.045    0.191    0.849   -0.079    0.098
##   authen ~                                                                    
##     mtblty_fct (a)          0.334    0.088    3.774    0.000    0.163    0.512
##   whitemulti_trust_dif ~                                                      
##     authen     (b)         -0.081    0.033   -2.439    0.015   -0.146   -0.017
##    Std.lv  Std.all
##                   
##     0.009    0.008
##                   
##     0.334    0.157
##                   
##    -0.081   -0.168
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .whtmlt_trst_df    0.496    0.178    2.789    0.005    0.150    0.846
##    .authen            4.830    0.139   34.655    0.000    4.551    5.098
##    Std.lv  Std.all
##     0.496    0.966
##     4.830    4.543
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .whtmlt_trst_df    0.257    0.029    8.752    0.000    0.201    0.315
##    .authen            1.103    0.073   15.148    0.000    0.962    1.245
##    Std.lv  Std.all
##     0.257    0.972
##     1.103    0.975
## 
## R-Square:
##                    Estimate
##     whtmlt_trst_df    0.028
##     authen            0.025
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     ab               -0.027    0.013   -2.065    0.039   -0.056   -0.005
##     total            -0.018    0.044   -0.421    0.673   -0.104    0.068
##    Std.lv  Std.all
##    -0.027   -0.026
##    -0.018   -0.018
## [1] lhs      op       rhs      mi       epc      sepc.lv  sepc.all sepc.nox
## <0 rows> (or 0-length row.names)

Explicit trust

## lavaan 0.6.15 ended normally after 22 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           555
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                               320.905
##   Degrees of freedom                                 3
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1407.227
##   Loglikelihood unrestricted model (H1)      -1407.227
##                                                       
##   Akaike (AIC)                                2828.454
##   Bayesian (BIC)                              2858.687
##   Sample-size adjusted Bayesian (SABIC)       2836.466
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                       NA
##   P-value H_0: RMSEA >= 0.080                       NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             5000
##   Number of successful bootstrap draws            5000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   trust_survey ~                                                        
##     mtblty_fct (c)   -0.133    0.059   -2.239    0.025   -0.249   -0.015
##   authen ~                                                              
##     mtblty_fct (a)    0.330    0.089    3.702    0.000    0.151    0.502
##   trust_survey ~                                                        
##     authen     (b)    0.573    0.030   19.107    0.000    0.513    0.630
##    Std.lv  Std.all
##                   
##    -0.133   -0.072
##                   
##     0.330    0.155
##                   
##     0.573    0.659
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .trust_survey      2.166    0.179   12.095    0.000    1.828    2.532
##    .authen            4.834    0.140   34.438    0.000    4.556    5.114
##    Std.lv  Std.all
##     2.166    2.339
##     4.834    4.536
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .trust_survey      0.493    0.035   14.016    0.000    0.423    0.561
##    .authen            1.109    0.073   15.263    0.000    0.969    1.256
##    Std.lv  Std.all
##     0.493    0.575
##     1.109    0.976
## 
## R-Square:
##                    Estimate
##     trust_survey      0.425
##     authen            0.024
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     ab                0.189    0.052    3.602    0.000    0.086    0.292
##     total             0.056    0.078    0.720    0.472   -0.097    0.210
##    Std.lv  Std.all
##     0.189    0.102
##     0.056    0.030
## [1] lhs      op       rhs      mi       epc      sepc.lv  sepc.all sepc.nox
## <0 rows> (or 0-length row.names)

Does fluidity mediate the relation between mutability/construct and trust? (in moderated mediation)

## lavaan 0.6.15 ended normally after 27 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         9
## 
##                                                   Used       Total
##   Number of observations                           551         555
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 1.720
##   Degrees of freedom                                 2
##   P-value (Chi-square)                           0.423
## 
## Model Test Baseline Model:
## 
##   Test statistic                               148.936
##   Degrees of freedom                                 7
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.007
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1175.826
##   Loglikelihood unrestricted model (H1)      -1174.966
##                                                       
##   Akaike (AIC)                                2369.652
##   Bayesian (BIC)                              2408.458
##   Sample-size adjusted Bayesian (SABIC)       2379.888
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.081
##   P-value H_0: RMSEA <= 0.050                    0.766
##   P-value H_0: RMSEA >= 0.080                    0.052
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.013
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                          Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   fluidity ~                                                                  
##     cnstrc_  (a11)          0.954    0.259    3.689    0.000    0.447    1.461
##     mtblty_ (a1m1)         -0.138    0.260   -0.532    0.595   -0.647    0.371
##     cnst_:_ (a111)         -0.581    0.165   -3.533    0.000   -0.904   -0.259
##   whitemulti_trust_dif ~                                                      
##     fluidty  (b11)         -0.031    0.020   -1.551    0.121   -0.070    0.008
##     cnstrc_  (c11)         -0.032    0.044   -0.741    0.459   -0.118    0.053
##    Std.lv  Std.all
##                   
##     0.954    0.434
##    -0.138   -0.063
##    -0.581   -0.565
##                   
##    -0.031   -0.066
##    -0.032   -0.032
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .fluidity          4.401    0.410   10.723    0.000    3.597    5.206
##    .whtmlt_trst_df    0.259    0.108    2.409    0.016    0.048    0.470
##    Std.lv  Std.all
##     4.401    4.001
##     0.259    0.504
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .fluidity          0.932    0.056   16.598    0.000    0.822    1.042
##    .whtmlt_trst_df    0.263    0.016   16.598    0.000    0.232    0.294
##    Std.lv  Std.all
##     0.932    0.770
##     0.263    0.994
## 
## R-Square:
##                    Estimate
##     fluidity          0.230
##     whtmlt_trst_df    0.006
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     a11_cond1         0.954    0.259    3.689    0.000    0.447    1.461
##     a11_cond2         0.373    0.115    3.236    0.001    0.147    0.599
##     i_y1m1x1mod1      0.018    0.013    1.420    0.156   -0.007    0.043
##     ind_b11_11_cn1   -0.029    0.021   -1.430    0.153   -0.070    0.011
##     ind_b11_11_cn2   -0.011    0.008   -1.399    0.162   -0.028    0.005
##    Std.lv  Std.all
##     0.954    0.434
##     0.373   -0.131
##     0.018    0.037
##    -0.029   -0.029
##    -0.011    0.009
##                     lhs op                                  rhs    mi    epc
## 25 whitemulti_trust_dif  ~                   mutability_numeric 1.701 -0.064
## 24             fluidity  ~                 whitemulti_trust_dif 1.438 -0.202
## 26 whitemulti_trust_dif  ~ construct_numeric:mutability_numeric 1.375 -0.037
## 32   mutability_numeric  ~                 whitemulti_trust_dif 0.327 -0.008
## 28    construct_numeric  ~                 whitemulti_trust_dif 0.053 -0.003
##    sepc.lv sepc.all sepc.nox
## 25  -0.064   -0.062   -0.125
## 24  -0.202   -0.094   -0.094
## 26  -0.037   -0.077   -0.072
## 32  -0.008   -0.008   -0.008
## 28  -0.003   -0.003   -0.003

```