PCSI Gender Study Pilot Analyses

Descriptive Statistics

Descriptive stats for each question (continued below)
  vars n mean sd median trimmed
gender_cat_cis_1 1 202 40.47 33.74 33.5 35.23
gender_label_cis_1 2 205 42.75 34.02 36 37.04
gender_stereo_cis_1 3 204 57.27 40.19 48 51.8
gender_identify_cis_1 4 204 45.6 37.25 36 38.9
gender_disclose_cis_1 5 205 44.73 37.76 36 37.6
gender_cat_trans_1 6 205 60.4 55.84 36 51.13
gender_label_trans_1 7 205 63.44 55.05 36 53.32
gender_stereo_trans_1 8 204 73.3 53.98 58.5 66.32
gender_identify_tran_1 9 206 87.62 59.17 67 82.17
gender_disclose_tran_1 10 205 101 63.52 94 98.4
  mad min max range skew kurtosis se
gender_cat_cis_1 21.5 0 182 182 1.909 4.484 2.374
gender_label_cis_1 17.79 0 216 216 2.353 6.761 2.376
gender_stereo_cis_1 27.43 0 216 216 1.402 2.088 2.814
gender_identify_cis_1 17.79 0 216 216 2.313 6.111 2.608
gender_disclose_cis_1 17.79 0 216 216 2.238 5.557 2.637
gender_cat_trans_1 26.69 0 216 216 1.376 0.9193 3.9
gender_label_trans_1 19.27 7 216 209 1.482 1.11 3.845
gender_stereo_trans_1 38.55 0 216 216 1.076 0.2836 3.779
gender_identify_tran_1 61.53 6 216 210 0.633 -0.7907 4.122
gender_disclose_tran_1 85.99 0 216 216 0.2356 -1.301 4.436

T-test for differences between cisgender and transgender milestones

Categorization

Categorization (continued below)
Test statistic df P value Alternative hypothesis
-4.296 334.4 0.00002278 * * * two.sided
mean in group gender_cat_cis_1 mean in group gender_cat_trans_1
40.47 60.11

Labeling

Categorization (continued below)
Test statistic df P value Alternative hypothesis
-4.524 338.5 0.000008402 * * * two.sided
mean in group gender_label_cis_1 mean in group gender_label_trans_1
42.74 63.27

Stereotyping

Stereotyping (continued below)
Test statistic df P value Alternative hypothesis
-3.413 372.6 0.000714 * * * two.sided
mean in group gender_stereo_cis_1 mean in group gender_stereo_trans_1
56.96 73.06

Identification

Identification (continued below)
Test statistic df P value Alternative hypothesis
-8.664 341.6 0.0000000000000001842 * * * two.sided
mean in group gender_identify_cis_1 mean in group gender_identify_tran_1
45.15 87.41

Disclosure

Disclosure (continued below)
Test statistic df P value Alternative hypothesis
-11.02 328 0.000000000000000000000003134 * * * two.sided
mean in group gender_disclose_cis_1 mean in group gender_disclose_tran_1
44.29 101.2

Exploratory Analyses

Linear Regressions with age difference score (trans age - cis age) predicting secondary DVs

General Autonomy

Estimates for the general autonomy model
term estimate std.error statistic p.value
(Intercept) 6.0529 0.0889 68.0704 0.0000
gender_comp -0.0070 0.0018 -3.9586 0.0001
Summary for the general autonomy model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0733 0.0687 0.9922 15.6705 0.0001 1 -281.225 568.45 578.345 194.94 198 200
Estimates for the general autonomy model
term estimate std.error statistic p.value
(Intercept) 7.2178 0.1114 64.7848 0.0000
gender_comp -0.0002 0.0014 -0.1543 0.8775
tabs -0.5439 0.0421 -12.9318 0.0000
Summary for the general autonomy model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.4988 0.4937 0.7316 98.0286 0 2 -219.767 447.534 460.727 105.436 197 200

Medical Autonomy

Estimates for the medical autonomy model
term estimate std.error statistic p.value
(Intercept) 5.4504 0.101 53.9444 0
gender_comp -0.0087 0.002 -4.3204 0
Summary for the medical autonomy model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0862 0.0815 1.1274 18.6662 0 1 -306.772 619.545 629.44 251.681 198 200
Estimates for the medical autonomy model
term estimate std.error statistic p.value
(Intercept) 6.6247 0.1376 48.1613 0.0000
gender_comp -0.0018 0.0017 -1.0620 0.2895
tabs -0.5483 0.0519 -10.5592 0.0000
Summary for the medical autonomy model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.4164 0.4105 0.9032 70.2896 0 2 -261.922 531.844 545.037 160.719 197 200

Gender Identity Autonomy

Estimates for the gender identity autonomy model
term estimate std.error statistic p.value
(Intercept) 5.6643 0.1372 41.2782 0
gender_comp -0.0137 0.0027 -4.9942 0
Summary for the gender identity autonomy model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.1114 0.1069 1.5379 24.9424 0 1 -370.718 747.436 757.346 470.674 199 201
Estimates for the gender identity autonomy model
term estimate std.error statistic p.value
(Intercept) 7.6418 0.1575 48.5119 0.0000
gender_comp -0.0020 0.0020 -1.0040 0.3166
tabs -0.9244 0.0594 -15.5628 0.0000
Summary for the gender identity autonomy model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.6018 0.5977 1.0329 148.083 0 2 -287.29 582.58 595.754 209.09 196 199

Anti-trans Legislation

Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 2.9459 0.1458 20.2076 0
gender_comp 0.0159 0.0029 5.4989 0
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.1325 0.1281 1.6267 30.238 0 1 -380.099 766.198 776.093 523.967 198 200
Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 0.7685 0.1588 4.8402 0.0000
gender_comp 0.0033 0.0020 1.6412 0.1024
tabs 1.0150 0.0599 16.9519 0.0000
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.6482 0.6446 1.0411 180.596 0 2 -288.873 585.745 598.918 212.442 196 199
## 
##  Pearson's product-moment correlation
## 
## data:  pcsiData$gender_comp and pcsiData$tabs
## t = 5.661, df = 198, p-value = 0.0000000523
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.247312 0.486779
## sample estimates:
##      cor 
## 0.373246
## lavaan 0.6.15 ended normally after 22 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         9
## 
##                                                   Used       Total
##   Number of observations                           199         223
## 
## Model Test User Model:
##                                                       
##   Test statistic                               228.561
##   Degrees of freedom                                 3
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               443.084
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.484
##   Tucker-Lewis Index (TLI)                      -0.032
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1679.778
##   Loglikelihood unrestricted model (H1)      -1565.497
##                                                       
##   Akaike (AIC)                                3377.555
##   Bayesian (BIC)                              3407.195
##   Sample-size adjusted Bayesian (SABIC)       3378.683
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.615
##   90 Percent confidence interval - lower         0.549
##   90 Percent confidence interval - upper         0.683
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.259
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws              500
##   Number of successful bootstrap draws             500
## 
## Regressions:
##                      Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   legislation ~                                                           
##     autonomy_gendn     -0.800    0.053  -15.200    0.000   -0.905   -0.690
##   autonomy_geniden ~                                                      
##     gender_comp        -0.014    0.003   -4.577    0.000   -0.020   -0.008
##   gender_comp ~                                                           
##     tabs               11.176    2.765    4.042    0.000    5.878   16.796
##    Std.lv  Std.all
##                   
##    -0.800   -0.746
##                   
##    -0.014   -0.331
##                   
##    11.176    0.373
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .legislation       7.629    0.280   27.218    0.000    7.028    8.214
##    .autonomy_gendn    5.660    0.129   44.034    0.000    5.412    5.914
##    .gender_comp       2.618    6.412    0.408    0.683  -10.273   15.161
##    Std.lv  Std.all
##     7.629    4.379
##     5.660    3.484
##     2.618    0.066
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .legislation       1.348    0.151    8.929    0.000    1.063    1.667
##    .autonomy_gendn    2.349    0.256    9.194    0.000    1.827    2.842
##    .gender_comp    1361.167  203.492    6.689    0.000  977.005 1753.242
##    Std.lv  Std.all
##     1.348    0.444
##     2.349    0.890
##  1361.167    0.861
## 
## R-Square:
##                    Estimate
##     legislation       0.556
##     autonomy_gendn    0.110
##     gender_comp       0.139
##                 lhs op              rhs      mi    epc sepc.lv sepc.all
## 18             tabs  ~      legislation 116.187  0.627   0.627    0.822
## 15 autonomy_geniden  ~             tabs 109.990 -0.924  -0.924   -0.756
## 17      gender_comp  ~ autonomy_geniden 109.990 47.930  47.930    1.958
## 19             tabs  ~ autonomy_geniden 109.990 -0.695  -0.695   -0.849
## 13      legislation  ~             tabs  22.982  0.299   0.299    0.228
##    sepc.nox
## 18    0.822
## 15   -0.569
## 17    1.958
## 19   -0.849
## 13    0.172
## lavaan 0.6.15 ended normally after 22 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##                                                   Used       Total
##   Number of observations                           200         223
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                               192.198
##   Degrees of freedom                                 3
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -678.807
##   Loglikelihood unrestricted model (H1)       -678.807
##                                                       
##   Akaike (AIC)                                1371.613
##   Bayesian (BIC)                              1394.701
##   Sample-size adjusted Bayesian (SABIC)       1372.525
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                       NA
##   P-value H_0: RMSEA >= 0.080                       NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws              500
##   Number of successful bootstrap draws             500
## 
## Regressions:
##                      Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   legislation ~                                                           
##     gender_cmp (c)      0.006    0.002    3.168    0.002    0.002    0.009
##   autonomy_geniden ~                                                      
##     gender_cmp (a)     -0.014    0.003   -4.551    0.000   -0.020   -0.008
##   legislation ~                                                           
##     atnmy_gndn (b)     -0.751    0.055  -13.589    0.000   -0.858   -0.643
##    Std.lv  Std.all
##                   
##     0.006    0.132
##                   
##    -0.014   -0.331
##                   
##    -0.751   -0.701
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .legislation       7.192    0.324   22.226    0.000    6.588    7.837
##    .autonomy_gendn    5.654    0.133   42.497    0.000    5.403    5.918
##    Std.lv  Std.all
##     7.192    4.139
##     5.654    3.484
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .legislation       1.297    0.155    8.348    0.000    0.991    1.577
##    .autonomy_gendn    2.345    0.248    9.465    0.000    1.849    2.832
##    Std.lv  Std.all
##     1.297    0.429
##     2.345    0.891
## 
## R-Square:
##                    Estimate
##     legislation       0.571
##     autonomy_gendn    0.109
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     ab                0.010    0.002    4.335    0.000    0.006    0.016
##     total             0.016    0.003    5.506    0.000    0.011    0.022
##    Std.lv  Std.all
##     0.010    0.232
##     0.016    0.364
## [1] lhs      op       rhs      mi       epc      sepc.lv  sepc.all sepc.nox
## <0 rows> (or 0-length row.names)
## lavaan 0.6.15 ended normally after 26 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##                                                   Used       Total
##   Number of observations                           199         223
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                               213.097
##   Degrees of freedom                                 3
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -611.278
##   Loglikelihood unrestricted model (H1)       -611.278
##                                                       
##   Akaike (AIC)                                1236.556
##   Bayesian (BIC)                              1259.609
##   Sample-size adjusted Bayesian (SABIC)       1237.433
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                       NA
##   P-value H_0: RMSEA >= 0.080                       NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws              500
##   Number of successful bootstrap draws             500
## 
## Regressions:
##                      Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   tabs ~                                                                  
##     gender_cmp (c)      0.004    0.002    2.055    0.040    0.000    0.008
##   autonomy_geniden ~                                                      
##     gender_cmp (a)     -0.014    0.003   -4.440    0.000   -0.020   -0.008
##   tabs ~                                                                  
##     atnmy_gndn (b)     -0.598    0.049  -12.152    0.000   -0.699   -0.497
##    Std.lv  Std.all
##                   
##     0.004    0.131
##                   
##    -0.014   -0.331
##                   
##    -0.598   -0.731
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .tabs              5.528    0.313   17.638    0.000    4.899    6.165
##    .autonomy_gendn    5.660    0.133   42.683    0.000    5.394    5.908
##    Std.lv  Std.all
##     5.528    4.160
##     5.660    3.484
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .tabs              0.680    0.079    8.562    0.000    0.523    0.840
##    .autonomy_gendn    2.349    0.261    9.014    0.000    1.849    2.869
##    Std.lv  Std.all
##     0.680    0.385
##     2.349    0.890
## 
## R-Square:
##                    Estimate
##     tabs              0.615
##     autonomy_gendn    0.110
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     ab                0.008    0.002    4.386    0.000    0.005    0.012
##     total             0.012    0.003    4.976    0.000    0.007    0.017
##    Std.lv  Std.all
##     0.008    0.242
##     0.012    0.373
## [1] lhs      op       rhs      mi       epc      sepc.lv  sepc.all sepc.nox
## <0 rows> (or 0-length row.names)