PCSI Gender Study Pilot Exploratory Analyses

Examining the Scales

Gender Development

Cisgender

## 
## Cronbach's alpha for the 'pcsiData[, c("gender_cat_cis_1", "gender_label_cis_1", "gender_stereo_cis_1", ' '    "gender_identify_cis_1", "gender_disclose_cis_1")]' data-set
## 
## Items: 5
## Sample units: 223
## alpha: 0.903
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.847 0.937

## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
## 
## Call:
## factanal(x = cisdevData, factors = 1, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##      gender_cat_cis_1    gender_label_cis_1   gender_stereo_cis_1 
##                 0.127                 0.241                 0.493 
## gender_identify_cis_1 gender_disclose_cis_1 
##                 0.347                 0.416 
## 
## Loadings:
##                       Factor1
## gender_cat_cis_1      0.935  
## gender_label_cis_1    0.871  
## gender_stereo_cis_1   0.712  
## gender_identify_cis_1 0.808  
## gender_disclose_cis_1 0.764  
## 
##                Factor1
## SS loadings      3.376
## Proportion Var   0.675
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 13.55 on 5 degrees of freedom.
## The p-value is 0.0187

Transgender

## 
## Cronbach's alpha for the 'pcsiData[, c("gender_cat_trans_1", "gender_label_trans_1", "gender_stereo_trans_1", ' '    "gender_identify_tran_1", "gender_disclose_tran_1")]' data-set
## 
## Items: 5
## Sample units: 223
## alpha: 0.891
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.852 0.919

## Parallel analysis suggests that the number of factors =  2  and the number of components =  1
## 
## Call:
## factanal(x = transdevData, factors = 2, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##     gender_cat_trans_1   gender_label_trans_1  gender_stereo_trans_1 
##                  0.214                  0.296                  0.214 
## gender_identify_tran_1 gender_disclose_tran_1 
##                  0.005                  0.534 
## 
## Loadings:
##                        Factor1 Factor2
## gender_cat_trans_1     0.815   0.349  
## gender_label_trans_1   0.694   0.471  
## gender_stereo_trans_1  0.806   0.369  
## gender_identify_tran_1 0.376   0.924  
## gender_disclose_tran_1 0.410   0.546  
## 
##                Factor1 Factor2
## SS loadings      2.105   1.632
## Proportion Var   0.421   0.326
## Cumulative Var   0.421   0.747
## 
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 8.73 on 1 degree of freedom.
## The p-value is 0.00312

Autonomy

General Autonomy

## 
## Cronbach's alpha for the 'pcsiData[, c("autonomy_gen_1", "autonomy_gen_2", "autonomy_gen_3", ' '    "autonomy_gen_4", "autonomy_gen_5", "autonomy_gen_6", "autonomy_gen_8", ' '    "autonomy_gen_9", "autonomy_gen_10")]' data-set
## 
## Items: 9
## Sample units: 223
## alpha: 0.942
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.918 0.958

## Parallel analysis suggests that the number of factors =  2  and the number of components =  1
## 
## Call:
## factanal(x = autongenData, factors = 2, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##  autonomy_gen_1  autonomy_gen_2  autonomy_gen_3  autonomy_gen_4  autonomy_gen_5 
##           0.191           0.238           0.269           0.306           0.463 
##  autonomy_gen_6  autonomy_gen_8  autonomy_gen_9 autonomy_gen_10 
##           0.253           0.353           0.166           0.244 
## 
## Loadings:
##                 Factor1 Factor2
## autonomy_gen_1  0.344   0.831  
## autonomy_gen_2  0.696   0.527  
## autonomy_gen_3  0.667   0.535  
## autonomy_gen_4  0.719   0.421  
## autonomy_gen_5  0.319   0.660  
## autonomy_gen_6  0.765   0.403  
## autonomy_gen_8  0.618   0.515  
## autonomy_gen_9  0.863   0.300  
## autonomy_gen_10 0.802   0.336  
## 
##                Factor1 Factor2
## SS loadings      4.021   2.496
## Proportion Var   0.447   0.277
## Cumulative Var   0.447   0.724
## 
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 44.24 on 19 degrees of freedom.
## The p-value is 0.000875

Medical Autonomy

## 
## Cronbach's alpha for the 'pcsiData[, c("autonomy_med_1", "autonomy_med_2", "autonomy_med_3", ' '    "autonomy_med_4", "autonomy_med_5", "autonomy_med_6", "autonomy_med_7", ' '    "autonomy_med_8", "autonomy_med_9r")]' data-set
## 
## Items: 9
## Sample units: 223
## alpha: 0.915
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.891 0.932

## Parallel analysis suggests that the number of factors =  2  and the number of components =  1
## 
## Call:
## factanal(x = autonmedData, factors = 2, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##  autonomy_med_1  autonomy_med_2  autonomy_med_3  autonomy_med_4  autonomy_med_5 
##           0.299           0.259           0.184           0.124           0.226 
##  autonomy_med_6  autonomy_med_7  autonomy_med_8 autonomy_med_9r 
##           0.247           0.119           0.309           0.955 
## 
## Loadings:
##                 Factor1 Factor2
## autonomy_med_1   0.557   0.625 
## autonomy_med_2   0.696   0.506 
## autonomy_med_3   0.842   0.329 
## autonomy_med_4   0.924   0.150 
## autonomy_med_5   0.848   0.233 
## autonomy_med_6   0.490   0.716 
## autonomy_med_7   0.454   0.822 
## autonomy_med_8   0.487   0.673 
## autonomy_med_9r          0.212 
## 
##                Factor1 Factor2
## SS loadings      3.759   2.518
## Proportion Var   0.418   0.280
## Cumulative Var   0.418   0.697
## 
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 39.22 on 19 degrees of freedom.
## The p-value is 0.00413

Gender Identity Autonomy

## 
## Cronbach's alpha for the 'pcsiData[, c("autonomy_geniden_1", "autonomy_geniden_2", "autonomy_geniden_3", ' '    "autonomy_geniden_4", "autonomy_geniden_5", "autonomy_geniden_6")]' data-set
## 
## Items: 6
## Sample units: 223
## alpha: 0.969
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.958 0.977

## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
## 
## Call:
## factanal(x = autongenidenData, factors = 1, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
## autonomy_geniden_1 autonomy_geniden_2 autonomy_geniden_3 autonomy_geniden_4 
##              0.232              0.388              0.109              0.061 
## autonomy_geniden_5 autonomy_geniden_6 
##              0.102              0.064 
## 
## Loadings:
##                    Factor1
## autonomy_geniden_1 0.876  
## autonomy_geniden_2 0.782  
## autonomy_geniden_3 0.944  
## autonomy_geniden_4 0.969  
## autonomy_geniden_5 0.948  
## autonomy_geniden_6 0.967  
## 
##                Factor1
## SS loadings      5.044
## Proportion Var   0.841
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 40.82 on 9 degrees of freedom.
## The p-value is 0.0000054

All scales together

## Parallel analysis suggests that the number of factors =  3  and the number of components =  3
## 
## Call:
## factanal(x = autonData, factors = 3, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##     autonomy_gen_1     autonomy_gen_2     autonomy_gen_3     autonomy_gen_4 
##              0.412              0.243              0.280              0.314 
##     autonomy_gen_5     autonomy_gen_6     autonomy_gen_8     autonomy_gen_9 
##              0.471              0.249              0.357              0.206 
##    autonomy_gen_10     autonomy_med_1     autonomy_med_2     autonomy_med_3 
##              0.254              0.270              0.251              0.257 
##     autonomy_med_4     autonomy_med_5     autonomy_med_6     autonomy_med_7 
##              0.320              0.373              0.309              0.245 
##     autonomy_med_8    autonomy_med_9r autonomy_geniden_1 autonomy_geniden_2 
##              0.348              0.969              0.225              0.390 
## autonomy_geniden_3 autonomy_geniden_4 autonomy_geniden_5 autonomy_geniden_6 
##              0.099              0.060              0.104              0.067 
## 
## Loadings:
##                    Factor1 Factor2 Factor3
## autonomy_gen_1     0.512   0.425   0.382  
## autonomy_gen_2     0.785   0.293   0.236  
## autonomy_gen_3     0.707   0.397   0.251  
## autonomy_gen_4     0.765   0.190   0.253  
## autonomy_gen_5     0.361   0.493   0.393  
## autonomy_gen_6     0.800   0.222   0.251  
## autonomy_gen_8     0.685   0.307   0.281  
## autonomy_gen_9     0.822   0.272   0.210  
## autonomy_gen_10    0.798   0.210   0.255  
## autonomy_med_1     0.262   0.712   0.394  
## autonomy_med_2     0.297   0.762   0.282  
## autonomy_med_3     0.425   0.714   0.229  
## autonomy_med_4     0.521   0.594   0.236  
## autonomy_med_5     0.389   0.649   0.234  
## autonomy_med_6     0.223   0.740   0.306  
## autonomy_med_7     0.183   0.781   0.333  
## autonomy_med_8     0.201   0.709   0.329  
## autonomy_med_9r    0.107           0.131  
## autonomy_geniden_1 0.261   0.318   0.778  
## autonomy_geniden_2 0.286   0.258   0.680  
## autonomy_geniden_3 0.218   0.341   0.858  
## autonomy_geniden_4 0.277   0.325   0.870  
## autonomy_geniden_5 0.321   0.375   0.808  
## autonomy_geniden_6 0.290   0.376   0.841  
## 
##                Factor1 Factor2 Factor3
## SS loadings      5.872   5.673   5.382
## Proportion Var   0.245   0.236   0.224
## Cumulative Var   0.245   0.481   0.705
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 618.64 on 207 degrees of freedom.
## The p-value is 1.31e-42

Prejudice (TABS)

Entire Scale

## 
## Cronbach's alpha for the 'pcsiData[, c("Q198_1", "Q198_2r", "Q198_3r", "Q198_4", "Q198_5", ' '    "Q198_6", "Q198_7", "Q198_8r", "Q198_9r", "Q198_10r", "Q198_11", ' '    "Q198_12", "Q198_13", "Q198_14r", "Q198_15", "Q198_16r", ' '    "Q198_17r", "Q198_18r", "Q198_19r", "Q198_20r", "Q198_22", ' '    "Q198_23r", "Q198_24r", "Q198_25", "Q198_26r", "Q198_27r", ' '    "Q198_28", "Q198_29", "Q198_30")]' data-set
## 
## Items: 29
## Sample units: 223
## alpha: 0.972
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.965 0.977

## Parallel analysis suggests that the number of factors =  3  and the number of components =  2
## 
## Call:
## factanal(x = tabsData, factors = 3, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##   Q198_1  Q198_2r  Q198_3r   Q198_4   Q198_5   Q198_6   Q198_7  Q198_8r 
##    0.451    0.435    0.239    0.169    0.513    0.495    0.150    0.348 
##  Q198_9r Q198_10r  Q198_11  Q198_12  Q198_13 Q198_14r  Q198_15 Q198_16r 
##    0.354    0.173    0.253    0.242    0.213    0.239    0.379    0.559 
## Q198_17r Q198_18r Q198_19r Q198_20r  Q198_22 Q198_23r Q198_24r  Q198_25 
##    0.300    0.180    0.184    0.191    0.116    0.347    0.323    0.205 
## Q198_26r Q198_27r  Q198_28  Q198_29  Q198_30 
##    0.367    0.148    0.308    0.272    0.565 
## 
## Loadings:
##          Factor1 Factor2 Factor3
## Q198_1   0.454   0.460   0.361  
## Q198_2r  0.489   0.412   0.395  
## Q198_3r  0.701   0.271   0.443  
## Q198_4   0.336   0.839   0.120  
## Q198_5   0.505   0.318   0.362  
## Q198_6   0.221   0.641   0.211  
## Q198_7   0.324   0.844   0.179  
## Q198_8r  0.343           0.725  
## Q198_9r  0.291   0.748          
## Q198_10r 0.791   0.328   0.308  
## Q198_11  0.683   0.475   0.235  
## Q198_12  0.703   0.490   0.152  
## Q198_13  0.777   0.403   0.143  
## Q198_14r 0.213           0.842  
## Q198_15  0.468   0.600   0.204  
## Q198_16r 0.526   0.195   0.356  
## Q198_17r 0.269   0.769   0.191  
## Q198_18r 0.777   0.402   0.233  
## Q198_19r 0.730   0.335   0.413  
## Q198_20r 0.694   0.290   0.493  
## Q198_22  0.309   0.867   0.189  
## Q198_23r 0.406   0.632   0.298  
## Q198_24r 0.195   0.220   0.769  
## Q198_25  0.727   0.373   0.356  
## Q198_26r 0.255   0.195   0.728  
## Q198_27r 0.339   0.180   0.840  
## Q198_28  0.662   0.346   0.366  
## Q198_29  0.272   0.792   0.161  
## Q198_30  0.542   0.293   0.235  
## 
##                Factor1 Factor2 Factor3
## SS loadings      7.898   7.285   5.098
## Proportion Var   0.272   0.251   0.176
## Cumulative Var   0.272   0.524   0.699
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 595.46 on 322 degrees of freedom.
## The p-value is 0.00000000000000000147

Interpersonal Comfort Subscale

## 
## Cronbach's alpha for the 'pcsiData[, c("Q198_1", "Q198_3r", "Q198_5", "Q198_10r", "Q198_11", ' '    "Q198_12", "Q198_13", "Q198_16r", "Q198_18r", "Q198_19r", ' '    "Q198_20r", "Q198_25", "Q198_28", "Q198_30")]' data-set
## 
## Items: 14
## Sample units: 223
## alpha: 0.964
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.952 0.973

## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
## 
## Call:
## factanal(x = tabsincomData, factors = 1, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##   Q198_1  Q198_3r   Q198_5 Q198_10r  Q198_11  Q198_12  Q198_13 Q198_16r 
##    0.502    0.264    0.527    0.178    0.279    0.294    0.255    0.572 
## Q198_18r Q198_19r Q198_20r  Q198_25  Q198_28  Q198_30 
##    0.190    0.191    0.230    0.206    0.306    0.564 
## 
## Loadings:
##          Factor1
## Q198_1   0.706  
## Q198_3r  0.858  
## Q198_5   0.688  
## Q198_10r 0.906  
## Q198_11  0.849  
## Q198_12  0.840  
## Q198_13  0.863  
## Q198_16r 0.654  
## Q198_18r 0.900  
## Q198_19r 0.899  
## Q198_20r 0.878  
## Q198_25  0.891  
## Q198_28  0.833  
## Q198_30  0.660  
## 
##                Factor1
## SS loadings      9.442
## Proportion Var   0.674
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 281.6 on 77 degrees of freedom.
## The p-value is 4.26e-25

Sex/Gender Beliefs Subscale

## 
## Cronbach's alpha for the 'pcsiData[, c("Q198_2r", "Q198_4", "Q198_6", "Q198_7", "Q198_9r", ' '    "Q198_15", "Q198_17r", "Q198_22", "Q198_23r", "Q198_29")]' data-set
## 
## Items: 10
## Sample units: 223
## alpha: 0.952
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.942 0.960

## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
## 
## Call:
## factanal(x = tabssgbelData, factors = 1, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##  Q198_2r   Q198_4   Q198_6   Q198_7  Q198_9r  Q198_15 Q198_17r  Q198_22 
##    0.598    0.178    0.499    0.150    0.368    0.430    0.299    0.119 
## Q198_23r  Q198_29 
##    0.385    0.274 
## 
## Loadings:
##          Factor1
## Q198_2r  0.634  
## Q198_4   0.907  
## Q198_6   0.708  
## Q198_7   0.922  
## Q198_9r  0.795  
## Q198_15  0.755  
## Q198_17r 0.837  
## Q198_22  0.939  
## Q198_23r 0.784  
## Q198_29  0.852  
## 
##                Factor1
## SS loadings      6.699
## Proportion Var   0.670
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 76.97 on 35 degrees of freedom.
## The p-value is 0.0000551

Human Value Subscale

## 
## Cronbach's alpha for the 'pcsiData[, c("Q198_8r", "Q198_14r", "Q198_24r", "Q198_26r", "Q198_27r")]' data-set
## 
## Items: 5
## Sample units: 223
## alpha: 0.918
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.875 0.946

## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
## 
## Call:
## factanal(x = tabshvData, factors = 1, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##  Q198_8r Q198_14r Q198_24r Q198_26r Q198_27r 
##    0.364    0.249    0.340    0.358    0.142 
## 
## Loadings:
##          Factor1
## Q198_8r  0.797  
## Q198_14r 0.866  
## Q198_24r 0.812  
## Q198_26r 0.801  
## Q198_27r 0.926  
## 
##                Factor1
## SS loadings      3.547
## Proportion Var   0.709
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 10.84 on 5 degrees of freedom.
## The p-value is 0.0546

Anti-trans Legislation

Entire Scale

## 
## Cronbach's alpha for the 'pcsiData[, c("Q197_1", "Q197_2", "Q197_3", "Q197_4", "Q197_5", ' '    "Q197_6", "Q197_7", "Q197_8", "Q197_10", "Q197_11", "Q197_12", ' '    "Q197_13", "Q197_14", "Q197_15", "Q197_16")]' data-set
## 
## Items: 15
## Sample units: 223
## alpha: 0.965
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.957 0.971

## Parallel analysis suggests that the number of factors =  2  and the number of components =  1
## 
## Call:
## factanal(x = legislationData, factors = 2, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##  Q197_1  Q197_2  Q197_3  Q197_4  Q197_5  Q197_6  Q197_7  Q197_8 Q197_10 Q197_11 
##   0.402   0.418   0.180   0.270   0.153   0.107   0.238   0.488   0.105   0.307 
## Q197_12 Q197_13 Q197_14 Q197_15 Q197_16 
##   0.243   0.409   0.614   0.117   0.380 
## 
## Loadings:
##         Factor1 Factor2
## Q197_1  0.664   0.395  
## Q197_2  0.706   0.289  
## Q197_3  0.780   0.460  
## Q197_4  0.745   0.418  
## Q197_5  0.371   0.842  
## Q197_6  0.347   0.879  
## Q197_7  0.767   0.417  
## Q197_8  0.488   0.524  
## Q197_10 0.841   0.433  
## Q197_11 0.759   0.342  
## Q197_12 0.659   0.569  
## Q197_13 0.449   0.624  
## Q197_14 0.268   0.561  
## Q197_15 0.818   0.462  
## Q197_16 0.438   0.654  
## 
##                Factor1 Factor2
## SS loadings      6.038   4.530
## Proportion Var   0.403   0.302
## Cumulative Var   0.403   0.705
## 
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 226.48 on 76 degrees of freedom.
## The p-value is 0.0000000000000000705

Civil Rights

## 
## Cronbach's alpha for the 'pcsiData[, c("Q197_1", "Q197_2", "Q197_3", "Q197_5", "Q197_6", ' '    "Q197_14")]' data-set
## 
## Items: 6
## Sample units: 223
## alpha: 0.897
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.873 0.916

## Parallel analysis suggests that the number of factors =  2  and the number of components =  1
## 
## Call:
## factanal(x = legcivData, factors = 2, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##  Q197_1  Q197_2  Q197_3  Q197_5  Q197_6 Q197_14 
##   0.336   0.406   0.207   0.183   0.035   0.633 
## 
## Loadings:
##         Factor1 Factor2
## Q197_1  0.353   0.734  
## Q197_2  0.260   0.725  
## Q197_3  0.449   0.769  
## Q197_5  0.810   0.401  
## Q197_6  0.923   0.336  
## Q197_14 0.488   0.358  
## 
##                Factor1 Factor2
## SS loadings      2.140   2.058
## Proportion Var   0.357   0.343
## Cumulative Var   0.357   0.700
## 
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 3.43 on 4 degrees of freedom.
## The p-value is 0.488

Healthcare

## 
## Cronbach's alpha for the 'pcsiData[, c("Q197_7", "Q197_10", "Q197_15")]' data-set
## 
## Items: 3
## Sample units: 223
## alpha: 0.95
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.932 0.963

## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
## 
## Call:
## factanal(x = leghealthData, factors = 1, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##  Q197_7 Q197_10 Q197_15 
##   0.230   0.111   0.066 
## 
## Loadings:
##         Factor1
## Q197_7  0.877  
## Q197_10 0.943  
## Q197_15 0.967  
## 
##                Factor1
## SS loadings      2.594
## Proportion Var   0.865
## 
## The degrees of freedom for the model is 0 and the fit was 0

Schools & Educations

## 
## Cronbach's alpha for the 'pcsiData[, c("Q197_4", "Q197_8", "Q197_11", "Q197_12", "Q197_13", ' '    "Q197_16")]' data-set
## 
## Items: 6
## Sample units: 223
## alpha: 0.917
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.896 0.934

## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
## 
## Call:
## factanal(x = legeduData, factors = 1, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##  Q197_4  Q197_8 Q197_11 Q197_12 Q197_13 Q197_16 
##   0.314   0.424   0.358   0.179   0.407   0.413 
## 
## Loadings:
##         Factor1
## Q197_4  0.828  
## Q197_8  0.759  
## Q197_11 0.801  
## Q197_12 0.906  
## Q197_13 0.770  
## Q197_16 0.766  
## 
##                Factor1
## SS loadings      3.905
## Proportion Var   0.651
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 56.64 on 9 degrees of freedom.
## The p-value is 0.00000000593

pcsi_clean <- var.count.mean(pcsi_clean, “tabs_count2”, “tabs”, pcsi_clean[c(“Q198_1”, “Q198_2r”, “Q198_3r”, “Q198_4”, “Q198_5”, “Q198_6”, “Q198_7”, “Q198_8r”, “Q198_9r”, “Q198_10r”, “Q198_11”, “Q198_12”, “Q198_13”, “Q198_14r”, “Q198_15”, “Q198_16r”, “Q198_17r”, “Q198_18r”, “Q198_19r”, “Q198_20r”, “Q198_22”, “Q198_23r”, “Q198_24r”, “Q198_25”, “Q198_26r”, “Q198_27r”, “Q198_28”, “Q198_29”, “Q198_30”)])

pcsi_clean <- var.count.mean(pcsi_clean, “legislation_count2”, “legislation”, pcsi_clean[c(“Q197_1”, “Q197_2”, “Q197_3”, “Q197_4”, “Q197_5”, “Q197_6”, “Q197_7”, “Q197_8”, “Q197_10”, “Q197_11”, “Q197_12”, “Q197_13”, “Q197_14”, “Q197_15”, “Q197_16”)])

Examining Distributions

Gender Development

Composites

Categorization

Labelling

Stereotyping

Identification

Disclosure

Autonomy

General Autonomy

Medical Autonomy

Gender Identity Autonomy

Prejudice (TABS)

Entire Scale

Interpersonal Comfort Subscale

Sex/Gender Beliefs Subscale

Human Value Subscale

Anti-trans Legislation

Entire Scale

Civil Rights

Healthcare

Schools & Educations

Exploratory Analyses Probing Findings

Does the gender composite predict different types of legislation differently?

Predicting support for civil rights legislation

Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 2.7104 0.1389 19.5163 0
gender_comp 0.0156 0.0028 5.6311 0
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.138 0.1337 1.5497 31.709 0 1 -370.4 746.8 756.694 475.534 198 200
Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 0.5669 0.1434 3.9528 0.0001
gender_comp 0.0031 0.0018 1.7062 0.0895
tabs 0.9998 0.0541 18.4885 0.0000
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.6859 0.6827 0.9403 213.977 0 2 -268.61 545.219 558.392 173.3 196 199

Predicting support for healthcare legislation

Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 3.2879 0.1802 18.2437 0
gender_comp 0.0177 0.0036 4.9414 0
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.1098 0.1053 2.0111 24.4173 0 1 -422.517 851.034 860.929 800.8 198 200
Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 1.0865 0.2392 4.5415 0.0000
gender_comp 0.0049 0.0030 1.6289 0.1049
tabs 1.0264 0.0902 11.3774 0.0000
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.4639 0.4584 1.5686 84.7898 0 2 -370.446 748.891 762.065 482.268 196 199

Predicting support for schools & education legislation

Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 3.0103 0.1526 19.7287 0
gender_comp 0.0154 0.0030 5.0907 0
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.1157 0.1113 1.7027 25.9151 0 1 -389.224 784.449 794.344 574.031 198 200
Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 0.8112 0.1745 4.6502 0.0000
gender_comp 0.0027 0.0022 1.2149 0.2258
tabs 1.0244 0.0658 15.5728 0.0000
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.6048 0.6008 1.1439 149.966 0 2 -307.607 623.213 636.387 256.455 196 199

Do different gender development questions predict support for legislation differently?

Categorization composite predicting support for anti-trans legislation

Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 3.2757 0.1295 25.2974 0.0000
gender_cat_comp -0.0085 0.0025 -3.3637 0.0009
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0541 0.0493 1.6987 11.3143 0.0009 1 -388.754 783.508 793.403 571.338 198 200
Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 0.7734 0.1603 4.8232 0.0000
gender_cat_comp 0.0004 0.0016 0.2701 0.7874
tabs 1.0565 0.0587 18.0044 0.0000
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.6435 0.6399 1.048 176.922 0 2 -290.194 588.387 601.56 215.281 196 199

Labelling composite predicting support for anti-trans legislation

Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 3.2758 0.1290 25.3976 0.0000
gender_label_comp -0.0083 0.0024 -3.4325 0.0007
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0562 0.0514 1.6968 11.7819 0.0007 1 -388.531 783.062 792.957 570.065 198 200
Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 0.7793 0.1588 4.9062 0.0000
gender_label_comp -0.0023 0.0015 -1.5348 0.1264
tabs 1.0328 0.0569 18.1389 0.0000
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.6476 0.644 1.042 180.122 0 2 -289.042 586.084 599.257 212.804 196 199

Stereotyping composite predicting support for anti-trans legislation

Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 3.2280 0.1249 25.8350 0
gender_stereo_comp -0.0126 0.0026 -4.7798 0
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.1034 0.0989 1.6537 22.8464 0 1 -383.391 772.782 782.677 541.504 198 200
Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 0.7552 0.1637 4.6118 0.0000
gender_stereo_comp 0.0011 0.0018 0.6024 0.5476
tabs 1.0677 0.0619 17.2546 0.0000
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.6441 0.6404 1.0473 177.328 0 2 -290.047 588.093 601.266 214.964 196 199

Identification composite predicting support for anti-trans legislation

Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 3.0360 0.1463 20.7532 0
gender_identify_comp -0.0096 0.0021 -4.6078 0
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0968 0.0923 1.6598 21.2314 0 1 -384.125 774.25 784.145 545.493 198 200
Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 0.7511 0.1590 4.7231 0.0000
gender_identify_comp -0.0025 0.0014 -1.8546 0.0652
tabs 1.0199 0.0580 17.5794 0.0000
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.6496 0.646 1.0392 181.642 0 2 -288.5 585 598.173 211.648 196 199

Disclosure composite predicting support for anti-trans legislation

Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 2.9594 0.1627 18.1859 0
gender_disclose_comp -0.0084 0.0020 -4.2806 0
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0847 0.0801 1.6709 18.3238 0 1 -385.46 776.92 786.815 552.825 198 200
Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 0.6652 0.1615 4.1186 0.0001
gender_disclose_comp -0.0035 0.0012 -2.8344 0.0051
tabs 1.0168 0.0562 18.1007 0.0000
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.6574 0.6539 1.0274 188.084 0 2 -286.233 580.467 593.64 206.881 196 199

Do the transgender development questions predict support for legislation on their own?

Trasngender age composite predicting support for anti-trans legislation

Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 2.2998 0.2124 10.8254 0
gender_trans_mean 0.0148 0.0023 6.3207 0
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.1679 0.1637 1.5932 39.9515 0 1 -375.931 757.862 767.757 502.578 198 200
Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 0.6011 0.1713 3.5086 0.0006
gender_trans_mean 0.0042 0.0016 2.5807 0.0106
tabs 0.9921 0.0596 16.6338 0.0000
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.6551 0.6516 1.0309 186.157 0 2 -286.906 581.812 594.985 208.284 196 199

Trasngender categorization age predicting support for anti-trans legislation

Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 2.9090 0.1748 16.6435 0.0000
gender_cat_trans_1 0.0089 0.0022 4.1211 0.0001
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.079 0.0743 1.6761 16.9832 0.0001 1 -386.082 778.164 788.059 556.273 198 200
Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 0.7453 0.1641 4.5420 0.000
gender_cat_trans_1 0.0012 0.0014 0.8274 0.409
tabs 1.0367 0.0587 17.6627 0.000
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.6446 0.641 1.0464 177.779 0 2 -289.884 587.767 600.94 214.612 196 199

Transgender labelling age predicting support for anti-trans legislation

Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 2.8325 0.1798 15.7572 0
gender_label_trans_1 0.0097 0.0022 4.4602 0
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0913 0.0867 1.6649 19.893 0 1 -384.737 775.475 785.37 548.844 198 200
Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 0.6974 0.1652 4.2222 0.0000
gender_label_trans_1 0.0024 0.0014 1.7242 0.0862
tabs 1.0227 0.0580 17.6356 0.0000
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.6487 0.6451 1.0404 180.988 0 2 -288.733 585.465 598.639 212.144 196 199

Transgender stereotyping age predicting support for anti-trans legislation

Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 2.5229 0.1927 13.0890 0
gender_stereo_trans_1 0.0124 0.0021 5.8882 0
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.149 0.1447 1.6112 34.6706 0 1 -378.175 762.351 772.246 513.985 198 200
Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 0.6942 0.1659 4.1852 0.0000
gender_stereo_trans_1 0.0025 0.0015 1.7066 0.0895
tabs 1.0104 0.0605 16.6886 0.0000
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.6486 0.645 1.0405 180.903 0 2 -288.763 585.526 598.699 212.208 196 199

Transgender identification age predicting support for anti-trans legislation

Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 2.3564 0.2012 11.7112 0
gender_identify_tran_1 0.0124 0.0019 6.4778 0
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.1749 0.1707 1.5865 41.9623 0 1 -375.09 756.179 766.074 498.367 198 200
Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 0.6163 0.1676 3.6777 0.0003
gender_identify_tran_1 0.0037 0.0013 2.7235 0.0070
tabs 0.9880 0.0597 16.5591 0.0000
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.6564 0.6529 1.0289 187.219 0 2 -286.535 581.07 594.243 207.509 196 199

Transgender disclosure age predicting support for anti-trans legislation

Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 2.4961 0.2198 11.3557 0
gender_disclose_tran_1 0.0093 0.0018 5.0503 0
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.1141 0.1096 1.6439 25.5054 0 1 -382.194 770.388 780.283 535.062 198 200
Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 0.4904 0.1765 2.7784 0.0060
gender_disclose_tran_1 0.0040 0.0012 3.4138 0.0008
tabs 1.0036 0.0561 17.8793 0.0000
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.6634 0.66 1.0184 193.16 0 2 -284.484 576.967 590.141 203.275 196 199

Do the transgender development ACCURACY questions predict support for legislation on their own?

Trasngender categorization age predicting support for anti-trans legislation

Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 2.9356 0.1701 17.2596 0.0000
gender_cat_trans_acc 0.0089 0.0022 4.1211 0.0001
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.079 0.0743 1.6761 16.9832 0.0001 1 -386.082 778.164 788.059 556.273 198 200
Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 0.7488 0.1631 4.5898 0.000
gender_cat_trans_acc 0.0012 0.0014 0.8274 0.409
tabs 1.0367 0.0587 17.6627 0.000
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.6446 0.641 1.0464 177.779 0 2 -289.884 587.767 600.94 214.612 196 199

Transgender labelling age predicting support for anti-trans legislation

Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 3.0642 0.1446 21.1977 0
gender_label_trans_acc 0.0097 0.0022 4.4602 0
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0913 0.0867 1.6649 19.893 0 1 -384.737 775.475 785.37 548.844 198 200
Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 0.7559 0.1591 4.7524 0.0000
gender_label_trans_acc 0.0024 0.0014 1.7242 0.0862
tabs 1.0227 0.0580 17.6356 0.0000
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.6487 0.6451 1.0404 180.988 0 2 -288.733 585.465 598.639 212.144 196 199

Transgender stereotyping age predicting support for anti-trans legislation

Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 2.9704 0.1389 21.3837 0
gender_stereo_trans_acc 0.0124 0.0021 5.8882 0
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.149 0.1447 1.6112 34.6706 0 1 -378.175 762.351 772.246 513.985 198 200
Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 0.7856 0.1587 4.9508 0.0000
gender_stereo_trans_acc 0.0025 0.0015 1.7066 0.0895
tabs 1.0104 0.0605 16.6886 0.0000
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.6486 0.645 1.0405 180.903 0 2 -288.763 585.526 598.699 212.208 196 199

Transgender identification age predicting support for anti-trans legislation

Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 2.6529 0.1652 16.0607 0
gender_identify_trans_acc 0.0124 0.0019 6.4778 0
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.1749 0.1707 1.5865 41.9623 0 1 -375.09 756.179 766.074 498.367 198 200
Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 0.7043 0.1591 4.4270 0.000
gender_identify_trans_acc 0.0037 0.0013 2.7235 0.007
tabs 0.9880 0.0597 16.5591 0.000
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.6564 0.6529 1.0289 187.219 0 2 -286.535 581.07 594.243 207.509 196 199

Transgender disclosure age predicting support for anti-trans legislation

Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 2.8308 0.1673 16.9225 0
gender_disclose_trans_acc 0.0093 0.0018 5.0503 0
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.1141 0.1096 1.6439 25.5054 0 1 -382.194 770.388 780.283 535.062 198 200
Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 0.6353 0.1607 3.9530 0.0001
gender_disclose_trans_acc 0.0040 0.0012 3.4138 0.0008
tabs 1.0036 0.0561 17.8793 0.0000
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.6634 0.66 1.0184 193.16 0 2 -284.484 576.967 590.141 203.275 196 199

Do the different prejudice subscales predict support for anti-trans legislation differently?

Interpersonal Comfort Subscale predicting support for anti-trans legislation

Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 1.4653 0.1729 8.4759 0
tabs.incom 0.8253 0.0618 13.3450 0
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.4735 0.4709 1.2673 178.09 0 1 -330.155 666.31 676.205 317.98 198 200

Sex/Gender Beliefs Subscale predicting support for anti-trans legislation

Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 0.5586 0.1225 4.5605 0
tabs.sgbel 0.9209 0.0346 26.6493 0
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.782 0.7809 0.8155 710.187 0 1 -241.993 489.986 499.88 131.679 198 200

Human Value Subscale predicting support for anti-trans legislation

Estimates for the legislation model
term estimate std.error statistic p.value
(Intercept) 2.3770 0.2141 11.1031 0
tabs.hv 0.6045 0.1031 5.8614 0
Summary for the legislation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.1485 0.1442 1.6157 34.3556 0 1 -376.835 759.67 769.55 514.251 197 199