library(tidyverse)
library(lme4)
library(corrr)
library(jmRtools)
library(sjPlot)
esm <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-esm.csv")
pre_survey_data_processed <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-pre-survey.csv")
post_survey_data_partially_processed <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-post-survey.csv")
video <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-video.csv")
pqa <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-pqa.csv")
attendance <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-attendance.csv")
class_data <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-class-video.csv")
demographics <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-demographics.csv")
pm <- read_csv("/Volumes/SCHMIDTLAB/PSE/Data/STEM-IE/STEM-IE-program-match.csv")
attendance <- rename(attendance, participant_ID = ParticipantID)
attendance <- mutate(attendance, prop_attend = DaysAttended / DaysScheduled,
participant_ID = as.integer(participant_ID))
attendance <- select(attendance, participant_ID, prop_attend)
demographics <- filter(demographics, participant_ID!= 7187)
demographics <- left_join(demographics, attendance)
esm$overall_engagement <- jmRtools::composite_mean_maker(esm, hard_working, concentrating, enjoy, interest)
df <- left_join(esm, pre_survey_data_processed, by = "participant_ID") # df & post-survey
df <- left_join(df, video, by = c("program_ID", "response_date", "sociedad_class", "signal_number")) # df & video
df <- left_join(df, demographics, by = c("participant_ID", "program_ID")) # df and demographics
pqa <- mutate(pqa,
active = active_part_1 + active_part_2,
ho_thinking = ho_thinking_1 + ho_thinking_2 + ho_thinking_3,
belonging = belonging_1 + belonging_2,
agency = agency_1 + agency_2 + agency_3 + agency_4,
youth_development_overall = active_part_1 + active_part_2 + ho_thinking_1 + ho_thinking_2 + ho_thinking_3 + belonging_1 + belonging_2 + agency_1 + agency_2 + agency_3 + agency_4,
making_observations = stem_sb_8,
data_modeling = stem_sb_2 + stem_sb_3 + stem_sb_9,
interpreting_communicating = stem_sb_6,
generating_data = stem_sb_4,
asking_questions = stem_sb_1)
# pqa <- rename(pqa, sixth_math_sociedad = sixth_math)
# pqa <- rename(pqa, seventh_math_sociedad = seventh_math)
# pqa <- rename(pqa, eighth_math_sociedad = eighth_math)
# pqa <- rename(pqa, dance_sociedad = dance)
# pqa <- rename(pqa, robotics_sociedad = robotics)
pqa$sociedad_class <- ifelse(pqa$eighth_math == 1, "8th Math",
ifelse(pqa$seventh_math == 1, "7th Math",
ifelse(pqa$sixth_math == 1, "6th Math",
ifelse(pqa$robotics == 1, "Robotics",
ifelse(pqa$dance == 1, "Dance", NA)))))
pqa <- rename(pqa,
program_ID = SiteIDNumeric,
response_date = resp_date,
signal_number = signal)
pqa$program_ID <- as.character(pqa$program_ID)
df <- left_join(df, pqa, by = c("response_date", "program_ID", "signal_number", "sociedad_class"))
df <- df %>%
mutate(youth_activity_three = case_when(
youth_activity_rc == "Creating Product" ~ "Creating Product",
youth_activity_rc == "Basic Skills Activity" ~ "Basic Skills Activity",
TRUE ~ "Other"
))
df$youth_activity_three <- fct_relevel(df$youth_activity_three,
"Other")
df <- df %>%
mutate(ho_thinking_dummy = ifelse(sum_ho_thinking > 0, 1, 0),
agency_dummy = ifelse(sum_agency > 0, 1, 0),
active_dummy = ifelse(sum_ap > 0, 1, 0),
belonging_dummy = ifelse(sum_belonging > 0, 1, 0),
stem_sb_dummy = ifelse(sum_stem_sb > 0, 1, 0))
df %>%
select(overall_engagement, challenge, relevance, overall_pre_interest, prop_attend, classroom_versus_field_enrichment, agency, sum_stem_sb) %>%
correlate() %>%
shave() %>%
fashion()
## rowname overall_engagement challenge relevance
## 1 overall_engagement
## 2 challenge .32
## 3 relevance .68 .39
## 4 overall_pre_interest .14 -.00 .09
## 5 prop_attend .04 -.03 .04
## 6 classroom_versus_field_enrichment -.03 .00 -.01
## 7 agency .06 .06 .02
## 8 sum_stem_sb .01 .00 .02
## overall_pre_interest prop_attend classroom_versus_field_enrichment
## 1
## 2
## 3
## 4
## 5 .06
## 6 -.10 .06
## 7 .08 .02 .21
## 8 .02 .04 .04
## agency sum_stem_sb
## 1
## 2
## 3
## 4
## 5
## 6
## 7
## 8 .39
m <- lmer(overall_engagement ~ 1 +
challenge +
relevance +
overall_pre_interest +
gender +
youth_activity_three +
(1|program_ID) + (1|participant_ID) + (agency_dummy|beep_ID_new),
data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
overall_engagement | ||||
B | std. Error | p | ||
Fixed Parts | ||||
(Intercept) | 1.14 | 0.11 | <.001 | |
challenge | 0.06 | 0.01 | <.001 | |
relevance | 0.53 | 0.02 | <.001 | |
overall_pre_interest | 0.07 | 0.03 | .021 | |
gender (M) | -0.07 | 0.05 | .198 | |
youth_activity_three (Basic Skills Activity) | 0.00 | 0.04 | .895 | |
youth_activity_three (Creating Product) | 0.01 | 0.04 | .727 | |
Random Parts | ||||
Nbeep_ID_new | 236 | |||
Nparticipant_ID | 180 | |||
Nprogram_ID | 9 | |||
ICCbeep_ID_new | 0.064 | |||
ICCparticipant_ID | 0.249 | |||
ICCprogram_ID | 0.012 | |||
Observations | 2549 | |||
R2 / Ω02 | .682 / .680 |
m <- lmer(overall_engagement ~ 1 +
challenge +
relevance +
overall_pre_interest +
gender +
agency_dummy +
stem_sb_dummy +
(1|program_ID) + (1|participant_ID) + (agency_dummy|beep_ID_new),
data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
overall_engagement | ||||
B | std. Error | p | ||
Fixed Parts | ||||
(Intercept) | 1.11 | 0.12 | <.001 | |
challenge | 0.06 | 0.01 | <.001 | |
relevance | 0.54 | 0.02 | <.001 | |
overall_pre_interest | 0.07 | 0.03 | .022 | |
gender (M) | -0.07 | 0.05 | .198 | |
agency_dummy | 0.09 | 0.04 | .021 | |
stem_sb_dummy | -0.06 | 0.04 | .143 | |
Random Parts | ||||
Nbeep_ID_new | 236 | |||
Nparticipant_ID | 180 | |||
Nprogram_ID | 9 | |||
ICCbeep_ID_new | 0.056 | |||
ICCparticipant_ID | 0.251 | |||
ICCprogram_ID | 0.012 | |||
Observations | 2549 | |||
R2 / Ω02 | .681 / .679 |
m <- lmer(overall_engagement ~ 1 +
challenge +
relevance +
overall_pre_interest +
gender +
agency_dummy +
stem_sb_dummy +
youth_activity_three +
(1|program_ID) + (1|participant_ID) + (agency_dummy|beep_ID_new),
data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
overall_engagement | ||||
B | std. Error | p | ||
Fixed Parts | ||||
(Intercept) | 1.11 | 0.12 | <.001 | |
challenge | 0.06 | 0.01 | <.001 | |
relevance | 0.54 | 0.02 | <.001 | |
overall_pre_interest | 0.07 | 0.03 | .023 | |
gender (M) | -0.07 | 0.05 | .199 | |
agency_dummy | 0.09 | 0.04 | .024 | |
stem_sb_dummy | -0.06 | 0.04 | .137 | |
youth_activity_three (Basic Skills Activity) | 0.01 | 0.04 | .729 | |
youth_activity_three (Creating Product) | 0.00 | 0.04 | .937 | |
Random Parts | ||||
Nbeep_ID_new | 236 | |||
Nparticipant_ID | 180 | |||
Nprogram_ID | 9 | |||
ICCbeep_ID_new | 0.056 | |||
ICCparticipant_ID | 0.251 | |||
ICCprogram_ID | 0.012 | |||
Observations | 2549 | |||
R2 / Ω02 | .681 / .680 |