1. Loading, setting up
We use variables for cognitive (made from “Important to you” and “Important to your future goals” variables), behavioral (“How well were you concentrating” and “How hard were you working”) and affective (“Did you enjoy” and “Was the main activity interesting”) variables.
2. Identifying the number of MEPs.
In this section, we identity the numbers based on the r-squared values and the cross-validation Fleiss’ Kappa.
# df <- mutate(df, interaction = challenge * good_at)
df$hard_working[is.nan(df$hard_working)] <- NA
plot_r_squared(df,
learning,
hard_working,
enjoy,
challenge,
good_at,
to_center = TRUE,
to_scale = TRUE,
r_squared_table = FALSE)


# x <- cross_validate(df,
# learning,
# hard_working,
# enjoy,
# challenge,
# good_at,
# n_profiles = 3,
# k = 30,
# to_center = TRUE,
# to_scale = TRUE)
#
# x
Creating profiles
p5 <- create_profiles(df,
learning,
hard_working,
enjoy,
challenge,
good_at,
n_profiles = 5,
to_center = TRUE,
to_scale = TRUE)
plot(p5)

# p5$ggplot_obj + hrbrthemes::theme_ipsum() + ylab("Z-score") + scale_fill_discrete("") + theme(text = element_text(angle = 45, hjust = 1))
five_p <- p5$.data
ggplot(df, aes(x = challenge, y = learning)) +
geom_jitter()

# p6 <- create_profiles(df,
# behavioral_engagement,
# cognitive_engagement,
# affective_engagement,
# n_profiles = 6,
# to_center = TRUE,
# to_scale = TRUE)
#
# plot(p6)
#
# six_p <- p6$.data
Modeling
Using amount of time spent in profiles to predict changes in outcomes
## rowname overall_post_interest overall_pre_interest prof_1
## 1 overall_post_interest
## 2 overall_pre_interest .59
## 3 prof_1 -.19 -.08
## 4 prof_2 .09 .09 -.39
## 5 prof_3 .33 .15 -.18
## 6 prof_4 -.11 -.10 -.27
## 7 prof_5 -.14 -.05 -.06
## prof_2 prof_3 prof_4 prof_5
## 1
## 2
## 3
## 4
## 5 -.14
## 6 -.27 -.32
## 7 -.31 -.27 -.26
|
|
overall_post_interest
|
|
|
B
|
std. Error
|
p
|
Fixed Parts
|
(Intercept)
|
|
1.11
|
0.32
|
<.001
|
overall_pre_interest
|
|
0.51
|
0.07
|
<.001
|
prof_1
|
|
-0.27
|
0.40
|
.493
|
prof_2
|
|
0.61
|
0.30
|
.041
|
prof_3
|
|
1.31
|
0.31
|
<.001
|
prof_4
|
|
0.38
|
0.29
|
.198
|
Random Parts
|
Nprogram_ID
|
|
9
|
ICCprogram_ID
|
|
0.063
|
Observations
|
|
142
|
R2 / Ω02
|
|
.494 / .494
|
|
|
overall_post_utility_value
|
|
|
B
|
std. Error
|
p
|
Fixed Parts
|
(Intercept)
|
|
2.87
|
0.38
|
<.001
|
overall_pre_utility_value
|
|
0.36
|
0.08
|
<.001
|
prof_1
|
|
-1.37
|
0.40
|
<.001
|
prof_2
|
|
-0.43
|
0.33
|
.202
|
prof_4
|
|
-0.88
|
0.31
|
.004
|
prof_5
|
|
-1.18
|
0.33
|
<.001
|
Random Parts
|
Nprogram_ID
|
|
9
|
ICCprogram_ID
|
|
0.034
|
Observations
|
|
140
|
R2 / Ω02
|
|
.301 / .300
|
|
|
overall_post_competence_beliefs
|
|
|
B
|
std. Error
|
p
|
Fixed Parts
|
(Intercept)
|
|
1.77
|
0.31
|
<.001
|
overall_pre_competence_beliefs
|
|
0.34
|
0.07
|
<.001
|
prof_1
|
|
0.25
|
0.38
|
.511
|
prof_2
|
|
0.58
|
0.29
|
.043
|
prof_3
|
|
1.18
|
0.31
|
<.001
|
prof_4
|
|
0.24
|
0.28
|
.398
|
Random Parts
|
Nprogram_ID
|
|
9
|
ICCprogram_ID
|
|
0.043
|
Observations
|
|
142
|
R2 / Ω02
|
|
.338 / .337
|