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1. Fundamental Interval and Ratio Scales

e For physical attributes, objects are fundamentally
measurable, the properties of order and addition have a
physical analogue (#g+t).

® Order. One rod is observed to be longer than another.

e Addition. Two (equal) rods can be added. If their
composite length equals a longer rod, then the length of
the longer must be twice the length of the shorter rods.
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2. Conjoint Measurement Theory

e The theory of conjoint measurement (Luce & Tuckey,
1964). (i 11 Tukey's.HSD.test 275 &= Tukey!) Specifies conditions that
can establish the required properties of order and additivity
for interval-scale measurement.

e Conjoint measurement is obtained when an outcome
variable is an additive function of two other variables,
assuming that all three variables may be ordered for

magnitude.

p.141
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https://en.wikipedia.org/wiki/Tukey%27s_range_test

3. Rasch's Example

Conjoint measurement theory may be applied to Rasch's

(1960) favorite example as follows.

Force

Mass
log(Acceleration) = log(Force) — log(Mass)

Acceleration =

For Rasch's 1PL model, the item performance scaled as log
odds is an additive combination of log trait level, 6, and log
item difficulty, 3;.

log(Item Odds) = log(Trait Level) — log(Item Difficulty)

Eq. 6.6-6.8
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The definition of measurement

e In physics and metrology, the standard definition of
measurement is the estimation of the ratio between a
magnitude of a continuous quantity and a unit magnitude
of the same kind (de Boer, 1994 /95; Emerson, 2008).
e.g., "The hallway is 4 m long".

e For some other quantities, Invariant are ratios b/w
attribute differences. e.g., the Fahrenheit or Celsius scales.

e What are really being measured with such instruments are
the magnitudes of temperature differences.

e.g., the unit of the Celsius scale is 1/100th of the
difference in temperature between the freezing and boiling
points of water at sea level.
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Extensive and intensive quantity

e Extensive (#}7£+1E). Length, or Mass.
e.g., 60(g) AR EE 4= 3 i» -> 30(g)+30(g)

e Intensive (P4-PE) . Temperature.
e.g., 60(°C) Arep ] = i» -> 30(°C)+30(°C) 77
(e, BREZ G 7 icid)

e Psychological attributes?? like temperature, or like
length?? The theory of conjoint measurement provides a
theoretical means of dealing w/ this.

See: Theary.of.conjqint..measurement from Wikipedia
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https://en.wikipedia.org/wiki/Theory_of_conjoint_measurement

4. Fundamental Measurement and the Rasch

Model

Rasch model derived from several conditions for scores.

e the sufficiency of the unweighted total score (Fisher, 1995)

e consistency of ordering persons and items (Roskam &
Jansen, 1984)

e additivity (Andrich, 1988)

e the principle of specific objectivity (Rasch, 1977).
Comparisons b/w objects must be generalizable beyond the
specific conditions under which they were observed.
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https://www.rasch.org/rmt/rmt83e.htm

5. Invariant-Person Comparisons

e Low. P1 - P2
e High. P4 - P5

1-P(Xa) = "

: Tnltal.ovol i ; . P (X 22)
FIG. 6.6. Item response theory log odds prediction. ]_ — 0 7
- P(Xg) 2P

Fig. 6.6, Eq. 6.9
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Compare persons at the low/high end.

P(X;1) P(Xi)
ST 6 Sy T 6 oy IR I
—60; — 65
— 220 — (~1.10)
— —1.10
P(X;4) P(Xi5)
In 1 — P(XZ-4) —In 1 — P(Xi5) N (04 B BZ) ; (05 B IBZ)
—60; — 65
= 1.10 — 2.20
— —1.10
Eq. 6.10-6.11

9/ 34



6. Invariant-ltem Comparisons

e Log odds of item 1 and item 2, for any subjects.

P(Xy,)

n 1 — P(X1,) =0, = h
P(X5)

In 73— P(Xa) Os = P2

Eq. 6.12
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Item comparisons for 1PL/2PL models.

P(X15) In P(X3s)

T 75 O L B =T o

— (93 — 51) - (98 — 52)
= —(B1 — B2)

For 2PL model, the difference does NOT depend only on item

difficulty (i.e. we also need to consider 6, a1, and az).

P(Xy5) P(X5;)
"1oP(XL) 11— P(Xa)
= ai(fs — B1) — az(0s — B2)
= 0s(a1 — az) — (@181 — a2/2)

1 —1

Eq. 6.13-6.14
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7. A Caveat * & F17

e (O) equating trait levels across non-overlapping item sets,

e.g. adaptive testing.

e (O) item parameters estimates are not much influenced by
the trait distribution in the calibration sample. (See
Whitely & Dawis, 1974).

e (X) the estimates from test data will have identical
properties over either items or over persons.

e e.g., if the item set is easy, a low trait level will be
more accurately estimated than a high trait level.
(information)

Although estimates can be equated over these conditions,
the standard errors are influenced. (See Ch. 7, 8, 9)
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8. Funamental Measurement of Persons in

More Complex Models (2PL)

In the 2PL model,

1 .
In 1— P(X;) N P(X5) :alt level dlffjrenczs
= a;(01 — Bi) — ai(62 — Bi) /W pe!rsonsl =PEEs
on the item's

= a6y — 0 on the fen's

= a;(—2.20 — (—1.10)) iscrimination value.
— —]..].OOZZ'

Eqg. 6.15
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9. Fundamental Measurement and Scale type

Ratio scale --> interval scale.
The odds that a person passes an item is given by the ratio of
trait level to item difficulty. Where &, = exp(6;), ¢; = exp(5;).

Pp & &4 Py &
1-P; €P e; 1— Py €

Consider the Rasch model in the log odds form.

Py

1
nl—Pﬂ

:es_ﬁi

Eq. 6.16, 6.18
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The odds ratio of person 1 and person 2 at item i as follows.

Pi &1
1-P1 & &

Py 3 &
1 — P; €

The relative odds b/w that any item is solved for the 2
persons is simply the ratio of their trait levels.

Eq. 6.17

15 / 34



10. Evaluating Psychological Data for

Fundamental Scalability

Luce and Tukey (1964) outline several conditions that must
be obtained to support additivity. (7 4v £ 3 & & i ix i£)

e Solvability and the Archmidean condition. (to ensure

e Single cancellation or independence axiom.
e Double cancellation axiom.
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https://en.wikipedia.org/wiki/Theory_of_conjoint_measurement

Michell (1990) shows how the double canellation condition
establishes that two parameters are additivity related to a
third variable.

Consider two natural attributes A, and X. It is not known that
either A or X is a continuous quantity, or both.

e A: (a, b, ¢
o X:(x, Y, 2)
e P: (a, x), (b, y),..., (¢, 2)

The quantification of A, X and P depends upon the behaviour
of the relation holding upon the levels of P.

See: Theary.of.conjqint..measurement from Wikipedia
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https://en.wikipedia.org/wiki/Theory_of_conjoint_measurement

Single Cancellation Axiom

The theory of conjoint measurement

X ¥ z

a a,x a, y a,z
| | |

b l b, x lb,y 1b‘,

c i c,) G2

It can be seen that a > b because (a, x) > (b, x), (a, y) >
(b, y) and (a, z) > (b, z).

See: Theary.of.conjqint..measurement from Wikipedia
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https://commons.wikimedia.org/wiki/File:Wikipage_single_cancellation.JPG#/media/File:Wikipage_single_cancellation.JPG
https://en.wikipedia.org/wiki/Theory_of_conjoint_measurement

wiki| Double Cancellation Axiom

a a,x a v a .z

f”
-
b b x by .-~ b,z
ﬂ-‘"
.
f”’ /
"'
; o i g

Given that: (a,y) > (b, x) is true if and only if a +y > b+ ,
and (b, z) > (c,y) istrue if and only if b+ z > c+ y, it
follows that: a + y+b+2>b+x+c+ .

Cancelling the common terms results in: (a, z) > (c, ).

See: Theary.of.conjqint..measurement from Wikipedia
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https://commons.wikimedia.org/wiki/File:Wikipage_double_cancellation.JPG#/media/File:Wikipage_double_cancellation.JPG
https://en.wikipedia.org/wiki/Theory_of_conjoint_measurement

Double Cancellation Condition (# 34 427 2X)

TABLE 6.5
Probabilities Generated by the Rasch Model:
The Principle of Double Cancellation

Ability
100 125 150

Item
Difficulty
-1.00

DI 8

R
CERE
NN\
I8

NN
fIFR

1.00

BRRO|E
N\ N\
SES

e Single cancellation. the relative order of probabilities for any
two items is the same, regardless of the ability column. Also, the
probabilities for persons is the same.

e Double cancellation. the third variable (# & ® % 5 &)
increases as both the other two variables (¥£/& ~ it # ) increase.

Table 6.5
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with only minor exceptions, these data generally correspond to
the double-cancellation pattern.

'TABLE 6.6
Basic Data Matrix Revisited
Raw Score
Them P
Set 3 4 5 6. 7 .8 9 10 11 12 13-16
12 92 _98 _.98 _99 _.98 _.9 _.99 _100 _100 _1.00 _ 1.00
34 487 84”7 847 867 867907 957 967 987 97 10
5-6 0621700 0 "9 8a” 887" 94’ 957 9
79 n’u’ 2’ a0’ a’n’ 8’ 9’ 87 9
101 0l w w8’ 597 167 57/ R
15113 0’0’0’0 w6’ 87 397 67 8
16 0”0 0”0 e an’ne” 37 6" ©w/” an
——
Table 6.6
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Fig.

Probabliity

b 3 3 » ]

Fig. 6.7

3.1 revisited.

FIG. 6.7. Figure 3.1 revisited.

by the diagonal arrows.

e double cancellation is
equivalent to stating that
the ICCs do not cross.

e double cancellation is shown
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e More complex IRT model (2PL) do not meet the double-
cancellation conditions. (discrimination)
e Conjoint measurement theory is only one view of scale

level. The 2PL model may be more favorably evaluated
under other views of scale level.

TABLE 6.7

Probabilities Generated from the 2PL Model: Double Cancellation? -
' Abili
Item Item ; " i ty o
Difficulty Discrimination -1.00 .00 100 125 150
-1.00 1 00 » . .92
' S50 73 88 9
2 12 3 2507 e lh 6 L
100 By 1B 2 el 76C 8 g p
' 2 s/ 567 %
—_ >
‘ —_
Table 6.7
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11. Justifying Scale Level in CTT (1)

The meaning of score differences clearly depends on the test
and its item properties. Interval-level can be justified in CTT
if two conditions hold,

(1)the true trait level , measured on an interval scale, is
normally distribution. (assumption)

(2)observed scores have a normal distribution.
- items can be selected to yield normal distributions by
choosing difficulty levels that are appropriate for the norm
group. (.40 ~ .60)
- non-normally distributed observed scores can be

normalized.
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11. Justifying Scale Level in CTT (2)

et
29 Adults-Manic Phase
0 "3 4 7] 8 10

FIG. 6.1. Conversion of Energetic Arousal scores to standard scores in
three norm groups.

Fig 6.1

When multiple norm groups
exist, it is difficult to justify
scaling level on the basis of
achieving a certain distribution
of scores.

Thus, justifying interval-scale
levels for CTT tests is often
difficult.
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12. Practical Importance of Scale Level

same data can lead different conclusions. CTT/IRT

e Two groups w/ equal true means can differ significantly on
observed means if the observed scores are not linearly
related to true score. (Maxwell & Delaney, 1985)

e Significant interactions can be observed from raw scores in
factorial ANOVA designs (Embretson, 1997).

e Estimates of growth and learning curves, repeated
measures comparisons and even regression coefficients have

been shown to depend on the scale level reached for
observed scores.
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Mapping proportion correct to trait level

Consider the Rasch model in
the log odds form.

P
In =0, — B;
—p =05
'rnltl..nv;l P L 6(98_/82)
FIG. 68. Mapping proportion correct to Rasch trait levels. “ s — 1 _|_ e ( 93_ /BZ)
e item difficulty = 1.5 , where 8; = 1.5

Fig. 6.8
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A simulation study of 3x2 factorial ANOVA design

e 300 cases per group

e randomly sampled from a distribution w/ variance =1.0

e means of control group. -1 (low), 0 (moderate), 1 (high).
e means of treatment group. -0.5 (low), 0.5 (moderate), 1.5

(high).

Conclusion. The greatest differences b/w conditions will be
found for the population for which the level of test difficulty is
most appropriate. (high trait w/ hard item, 1.5)
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Means of control and treatment groups for three
populations.

Trait Level Scores

Proportion Correct Scores

Lhw Moderate High

Population
Population

FIG.69. Means of control and treatment groups for three populaﬂbns.

Fig. 6.9
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13. My practice (Fig. 6.9)

trt |grp [m.true| m.trait| A6f|m.prop.| AP|e.prop.
cnt| L -1.0{ -0.987 - 0.107 - 0.077
cnt| M 0.0({ 0.013]1.000( 0.223(0.116| 0.184
cnt| H 1.0 1.01010.997| 0.399(0.176| 0.380
trt| L -0.5] -0.487 - 0.157 -| 0.121
trt | M 0.5 0.513|1.000( 0.304(0.147| 0.272
trt | H 1.5 1.51010.997| 0.501(0.197| 0.502

Note. (1) (set . seed(1234)),

(2)m.true=mean of true. (3)m.trait=mean of trait level. (4)m.prop=mean of
proportion correct. (5)e.prop= e™#ait=1.5 /(] | gm.trait—1.5)
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ANQOVA tables

## Analysis of Variance Table

##

## Response: prp

## Df Sum Sq Mean Sq F value Pr(>F)

## grp 2 30.590 15.2949 536.7894 < 2e-16 *x*x*
## trt 1 2.731 2.7306 95.8334 < 2e-16 **x*
## grp:trt 2 0.208 0.1042 3.6575 0.02599 *
## Residuals 1794 51.117 0.0285

#H ---

## Signif. codes:

## 0 '"*xx' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' " 1

o 7

## Analysis of Variance Table

##

## Response: tht

## Df Sum Sq Mean Sq F value Pr(>F)

## grp 2 1200.0 600.00 594.86 <2e-16 **x*
## trt 1 112.5 112.50 111.54 <2e-16 **x
## grp:trt 2 0.0 0.00 0.00 1

## Residuals 1794 1809.5 1.01

## ---

## Signif. codes: 31/ 34
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Appendix

sim_dat4 <- \(sim_m, sim_t, sim_g) {
\
N <- 300

p_fun <- \(x){
set.seed(1234) exp(x-1.5)/(1+exp(x-1.5))

tht <- rnorm(N, mean=sim_m, sd=1) }
tht <- as.data.frame(tht) th_fun <- \(p){
tht$grp <- sim_g log(p/(1-p)) + 1.5
tht$trt <- sim_t }
return(tht)
} prp_calc <- \(dat) {
- prp <- cQ

for (i in 1:nrow(dat) ) {
prpli] <- p_fun( dat$tht[i] )

}

dat$prp <- prp

return(dat)
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# stmulate data

dat_tl
dat_tm
dat_th
dat_cl
dat_cm
dat_ch

dat <-
dat$id
dat$id

<- sim_dat4(sim_m=-0.5, sim_t='trt', sim_g='L"')
<- sim_dat4(sim_m=0.5, sim_t='trt', sim_g='M"')
<- sim_dat4(sim_m=1.5, sim_t='trt', sim_g='H')
<- sim_dat4(sim_m=-1, sim_t='cnt', sim_g='L")
<- sim_dat4(sim_m=0, sim_t='cnt', sim_g='M"')

<- sim_dat4(sim_m=1, sim_t='cnt', sim_g='H')

rbind(dat_tl, dat_tm, dat_th, dat_cl, dat_cm, dat_ch)
<- seq(l:nrow(dat))
<- as.factor(dat$id)

dat$grp <- as.factor(dat$grp)
dat$trt <- as.factor(dat$trt)

dat <-

anova/(

anova/(

prp_calc(dat)

dat) )
dat) )

Im(prp ~ grp*xtrt, data
Im(tht ~ grp*xtrt, data
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