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1. Fundamental Interval and Ratio Scales

● For physical attributes, objects are fundamentally
measurable, the properties of order and addition have a
physical analogue (類比).

● Order. One rod is observed to be longer than another.
● Addition. Two (equal) rods can be added. If their

composite length equals a longer rod, then the length of
the longer must be twice the length of the shorter rods.
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2. Conjoint Measurement Theory

● The theory of conjoint measurement (Luce & Tuckey,
1964). (提出 Tukey's HSD test 的那位 Tukey!) specifies conditions that
can establish the required properties of order and additivity
for interval-scale measurement.

● Conjoint measurement is obtained when an outcome
variable is an additive function of two other variables,
assuming that all three variables may be ordered for
magnitude.

p.141
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https://en.wikipedia.org/wiki/Tukey%27s_range_test


3. Rasch's Example

Conjoint measurement theory may be applied to Rasch's
(1960) favorite example as follows.

For Rasch's 1PL model, the item performance scaled as log
odds is an additive combination of log trait level, , and log
item difficulty, .

Acceleration =

log(Acceleration) = log(Force) − log(Mass)

Force

Mass

θs

βi

log(Item Odds) = log(Trait Level) − log(Item Difficulty)

Eq. 6.6-6.8
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wiki  The definition of measurement

● In physics and metrology, the standard definition of
measurement is the estimation of the ratio between a
magnitude of a continuous quantity and a unit magnitude
of the same kind (de Boer, 1994/95; Emerson, 2008). 

e.g., "The hallway is 4 m long".

● For some other quantities, Invariant are ratios b/w
attribute differences. e.g., the Fahrenheit or Celsius scales.

● What are really being measured with such instruments are
the magnitudes of temperature differences. 

e.g., the unit of the Celsius scale is 1/100th of the
difference in temperature between the freezing and boiling
points of water at sea level.
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wiki  Extensive and intensive quantity

● Extensive (外延性). Length, or Mass. 

e.g., 60(g) 饅頭剝成兩份 -> 30(g)+30(g)

● Intensive (內含性) . Temperature. 
e.g., 60(°C) 饅頭剝成兩份 -> 30(°C)+30(°C) ?? 

(i.e., 溫度不具有可加性)

● Psychological attributes?? like temperature, or like
length?? The theory of conjoint measurement provides a
theoretical means of dealing w/ this.

See: Theory of conjoint measurement from Wikipedia
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https://en.wikipedia.org/wiki/Theory_of_conjoint_measurement


4. Fundamental Measurement and the Rasch
Model

Rasch model derived from several conditions for scores.

● the sufficiency of the unweighted total score (Fisher, 1995)
● consistency of ordering persons and items (Roskam &

Jansen, 1984)
● additivity (Andrich, 1988)
● the principle of specific objectivity (Rasch, 1977).

Comparisons b/w objects must be generalizable beyond the
specific conditions under which they were observed. 

(See also: Specific objectivity - local and general)
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https://www.rasch.org/rmt/rmt83e.htm


● Low. P1 - P2
● High. P4 - P5

5. Invariant-Person Comparisons

Fig. 6.6, Eq. 6.9

ln = θ1 − βi

P(Xi1)

1 − P(Xi1)

ln = θ2 − βi

P(Xi2)

1 − P(Xi2)

8 / 34



Compare persons at the low/high end.

ln − ln = (θ1 − βi) − (θ2 − βi)

= θ1 − θ2

= −2.20 − (−1.10)

= −1.10

P(Xi1)

1 − P(Xi1)

P(Xi2)

1 − P(Xi2)

ln − ln = (θ4 − βi) − (θ5 − βi)

= θ1 − θ2

= 1.10 − 2.20

= −1.10

P(Xi4)

1 − P(Xi4)

P(Xi5)

1 − P(Xi5)

Eq. 6.10-6.11
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6. Invariant-Item Comparisons

● Log odds of item 1 and item 2, for any subjects.

ln = θs − β1
P(X1s)

1 − P(X1s)

ln = θs − β2
P(X2s)

1 − P(X2s)

Eq. 6.12
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Item comparisons for 1PL/2PL models.

For 2PL model, the difference does NOT depend only on item
difficulty (i.e. we also need to consider , , and ).

ln − ln = (θs − β1) − (θs − β2)

= −(β1 − β2)

P(X1s)

1 − P(X1s)

P(X2s)

1 − P(X2s)

θs α1 α2

ln − ln

= α1(θs − β1) − α2(θs − β2)

= θs(α1 − α2) − (α1β1 − α2β2)

P(X1s)

1 − P(X1s)

P(X2s)

1 − P(X2s)

Eq. 6.13-6.14
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7. A Caveat 注意事項

● (O) equating trait levels across non-overlapping item sets,
e.g. adaptive testing.

● (O) item parameters estimates are not much influenced by
the trait distribution in the calibration sample. (See
Whitely & Dawis, 1974).

● (X) the estimates from test data will have identical
properties over either items or over persons.

● e.g., if the item set is easy, a low trait level will be
more accurately estimated than a high trait level.
(information)


Although estimates can be equated over these conditions,
the standard errors are influenced. (See Ch. 7, 8, 9)
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8. Funamental Measurement of Persons in
More Complex Models (2PL)

In the 2PL model,
trait level differences
b/w persons depends
on the item's
discrimination value.

ln − ln

= αi(θ1 − βi) − αi(θ2 − βi)

= αi(θ1 − θ2)

= αi(−2.20 − (−1.10))

= −1.10αi

P(Xi1)

1 − P(Xi1)

P(Xi2)

1 − P(Xi2)

Eq. 6.15
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9. Fundamental Measurement and Scale type

Ratio scale --> interval scale.

The odds that a person passes an item is given by the ratio of
trait level to item difficulty. Where .

Consider the Rasch model in the log odds form.

ξs = exp(θs), ϵi = exp(βi)

= = ; =
Pi1

1 − Pi1

eθ1

eβi

ξ1

ϵi

Pi2

1 − Pi2

ξ2

ϵi

ln = θs − βi

Pi1

1 − Pi1

Eq. 6.16, 6.18
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The odds ratio of person 1 and person 2 at item i as follows.

The relative odds b/w that any item is solved for the 2
persons is simply the ratio of their trait levels.

= =

Pi1

1 − Pi1

Pi2

1 − Pi2

ξ1

ϵi

ξ2

ϵi

ξ1

ξ2

Eq. 6.17
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10. Evaluating Psychological Data for
Fundamental Scalability

Luce and Tukey (1964) outline several conditions that must
be obtained to support additivity. (可加性需要幾個條件)

● Solvability and the Archmidean condition. (to ensure
continuity) (See also. Theory of conjoint measurement).

● Single cancellation or independence axiom.
● Double cancellation axiom.
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https://en.wikipedia.org/wiki/Theory_of_conjoint_measurement


Michell (1990) shows how the double canellation condition
establishes that two parameters are additivity related to a
third variable.

Consider two natural attributes A, and X. It is not known that
either A or X is a continuous quantity, or both.

● A: (a, b, c)
● X: (x, y, z)
● P: (a, x), (b, y),..., (c, z)

The quantification of A, X and P depends upon the behaviour
of the relation holding upon the levels of P.

See: Theory of conjoint measurement from Wikipedia
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https://en.wikipedia.org/wiki/Theory_of_conjoint_measurement


wiki  Single Cancellation Axiom

The theory of conjoint measurement

It can be seen that a > b because (a, x) > (b, x), (a, y) >
(b, y) and (a, z) > (b, z).

See: Theory of conjoint measurement from Wikipedia
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https://commons.wikimedia.org/wiki/File:Wikipage_single_cancellation.JPG#/media/File:Wikipage_single_cancellation.JPG
https://en.wikipedia.org/wiki/Theory_of_conjoint_measurement


wiki  Double Cancellation Axiom

Given that:  is true if and only if ,
and 
is true if and only if , it
follows that: .

Cancelling the common terms results in: .

(a, y) > (b, x) a + y > b + x

(b, z) > (c, y) b + z > c + y

a + y + b + z > b + x + c + y

(a, z) > (c, x)

See: Theory of conjoint measurement from Wikipedia
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https://commons.wikimedia.org/wiki/File:Wikipage_double_cancellation.JPG#/media/File:Wikipage_double_cancellation.JPG
https://en.wikipedia.org/wiki/Theory_of_conjoint_measurement


Double Cancellation Condition (機率值也可以)




● Single cancellation. the relative order of probabilities for any
two items is the same, regardless of the ability column. Also, the
probabilities for persons is the same.

● Double cancellation. the third variable (表格中的機率值)
increases as both the other two variables (難度、能力) increase.

Table 6.5

20 / 34



with only minor exceptions, these data generally correspond to
the double-cancellation pattern.

Table 6.6
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● double cancellation is shown
by the diagonal arrows.

● double cancellation is
equivalent to stating that
the ICCs do not cross.

Fig. 3.1 revisited.

Fig. 6.7
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● More complex IRT model (2PL) do not meet the double-
cancellation conditions. (discrimination)

● Conjoint measurement theory is only one view of scale
level. The 2PL model may be more favorably evaluated
under other views of scale level.

Table 6.7
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11. Justifying Scale Level in CTT (1)

The meaning of score differences clearly depends on the test
and its item properties. Interval-level can be justified in CTT
if two conditions hold,

(1)the true trait level , measured on an interval scale, is
normally distribution. (assumption)

(2)observed scores have a normal distribution.


- items can be selected to yield normal distributions by
choosing difficulty levels that are appropriate for the norm
group. (.40 ~ .60)


- non-normally distributed observed scores can be
normalized.
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When multiple norm groups
exist, it is difficult to justify
scaling level on the basis of
achieving a certain distribution
of scores.

Thus, justifying interval-scale
levels for CTT tests is often
difficult.

11. Justifying Scale Level in CTT (2)

Fig 6.1
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12. Practical Importance of Scale Level

same data can lead different conclusions. CTT/IRT

● Two groups w/ equal true means can differ significantly on
observed means if the observed scores are not linearly
related to true score. (Maxwell & Delaney, 1985)

● Significant interactions can be observed from raw scores in
factorial ANOVA designs (Embretson, 1997).

● Estimates of growth and learning curves, repeated
measures comparisons and even regression coefficients have
been shown to depend on the scale level reached for
observed scores.
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● item difficulty = 1.5

Consider the Rasch model in
the log odds form.

, where 

Mapping proportion correct to trait level

Fig. 6.8

ln = θs − βi

Pis

1 − Pis

Pis =
e(θs−βi)

1 + e(θs−βi)

βi = 1.5
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A simulation study of 3x2 factorial ANOVA design

● 300 cases per group
● randomly sampled from a distribution w/ variance =1.0
● means of control group. -1 (low), 0 (moderate), 1 (high).
● means of treatment group. -0.5 (low), 0.5 (moderate), 1.5

(high).

Conclusion. The greatest differences b/w conditions will be
found for the population for which the level of test difficulty is
most appropriate. (high trait w/ hard item, 1.5)

28 / 34



Means of control and treatment groups for three
populations.

Fig. 6.9
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13. My practice (Fig. 6.9)

trt grp m.true m.trait m.prop. e.prop.

cnt L -1.0 -0.987 - 0.107 - 0.077

cnt M 0.0 0.013 1.000 0.223 0.116 0.184

cnt H 1.0 1.010 0.997 0.399 0.176 0.380

trt L -0.5 -0.487 - 0.157 - 0.121

trt M 0.5 0.513 1.000 0.304 0.147 0.272

trt H 1.5 1.510 0.997 0.501 0.197 0.502

Note. (1) set.seed(1234) , 

(2)m.true=mean of true. (3)m.trait=mean of trait level. (4)m.prop=mean of
proportion correct. (5)e.prop= 

Δθ ΔP

em.trait−1.5/(1 + em.trait−1.5)
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ANOVA tables
## Analysis of Variance Table
## 
## Response: prp
##             Df Sum Sq Mean Sq  F value  Pr(>F)    
## grp          2 30.590 15.2949 536.7894 < 2e-16 ***
## trt          1  2.731  2.7306  95.8334 < 2e-16 ***
## grp:trt      2  0.208  0.1042   3.6575 0.02599 *  
## Residuals 1794 51.117  0.0285                     
## ---
## Signif. codes:  
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Analysis of Variance Table
## 
## Response: tht
##             Df Sum Sq Mean Sq F value Pr(>F)    
## grp          2 1200.0  600.00  594.86 <2e-16 ***
## trt          1  112.5  112.50  111.54 <2e-16 ***
## grp:trt      2    0.0    0.00    0.00      1    
## Residuals 1794 1809.5    1.01                   
## ---
## Signif. codes:  31 / 34



小疑問

● 如果改成用前述條件模擬1筆作答資料（例如 10 題的二
元計分資料），卻會發現 IRT 或 CTT 都沒有交互作用？
也無法很好的復原回 true score?? （不知道是模擬資料的
問題或是？？）

● 模擬 6 組不同分配的資料，跑同一個 IRT 模型是否會有
一些問題？？（分開跑每組的  平均會是 0）θ
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sim_dat4 <- \(sim_m, sim_t, sim_g) {
  N <- 300 
  set.seed(1234)
  tht <- rnorm(N, mean=sim_m, sd=1)
  tht <- as.data.frame(tht)
  tht$grp <- sim_g
  tht$trt <- sim_t
  return(tht)
}

p_fun <- \(x){
  exp(x-1.5)/(1+exp(x-1.5))
}
th_fun <- \(p){
  log(p/(1-p)) + 1.5
}

prp_calc <- \(dat) {
  prp <- c()
  for (i in 1:nrow(dat) ) {
    prp[i] <- p_fun( dat$tht[i] )
  }
  dat$prp <- prp
  return(dat)
}

Appendix
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# simulate data
dat_tl <- sim_dat4(sim_m=-0.5, sim_t='trt', sim_g='L')
dat_tm <- sim_dat4(sim_m=0.5, sim_t='trt', sim_g='M')
dat_th <- sim_dat4(sim_m=1.5, sim_t='trt', sim_g='H')
dat_cl <- sim_dat4(sim_m=-1, sim_t='cnt', sim_g='L')
dat_cm <- sim_dat4(sim_m=0, sim_t='cnt', sim_g='M')
dat_ch <- sim_dat4(sim_m=1, sim_t='cnt', sim_g='H')

dat <- rbind(dat_tl, dat_tm, dat_th, dat_cl, dat_cm, dat_ch)
dat$id <- seq(1:nrow(dat))
dat$id <- as.factor(dat$id)
dat$grp <- as.factor(dat$grp)
dat$trt <- as.factor(dat$trt)

dat <- prp_calc(dat)

anova( lm(prp ~ grp*trt, data = dat) )
anova( lm(tht ~ grp*trt, data = dat) )
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