Method

  1. Data exported from Kubios
  2. Selected Time-Varying HRV output (manually)
  3. Selected two epochs from each file - the minimum “Mean.HR” (Rest), and the maximum “Mean.HR” (Max) (R code, repeatable and I hope defensible)

Boxplots

Mean HR

meanHRplot <- ggplot(data = HR_Data_Full, aes(x=Epoch, y=Mean.HR)) + 
  geom_boxplot() +
  facet_grid(. ~ CPET, labeller = label_both)
meanHRplot

RMSSD

RMSSDplot <- ggplot(data = HR_Data_Full, aes(x=Epoch, y=RMSSD)) + 
  geom_boxplot() +
  facet_grid(. ~ CPET, labeller = label_both)
RMSSDplot

lnHFP

lnHFPplot <- ggplot(data = HR_Data_Full, aes(x=Epoch, y=lnHFP)) + 
  geom_boxplot() +
  facet_grid(. ~ CPET, labeller = label_both)
lnHFPplot

lnLFP

lnLFPplot <- ggplot(data = HR_Data_Full, aes(x=Epoch, y=lnLFP)) + 
  geom_boxplot() +
  facet_grid(. ~ CPET, labeller = label_both)
lnLFPplot

LF.HF.ratio

LF.HF.ratioplot <- ggplot(data = HR_Data_Full, aes(x=Epoch, y=LF.HF.ratio)) + 
  geom_boxplot() +
  facet_grid(. ~ CPET, labeller = label_both)
LF.HF.ratioplot

Repeated Measures ANOVA - HRV at peak exercise

peakData <- filter(HR_Data_Full, Epoch == "Max")

Mean HR at Peak Exercise

hist(peakData$Mean.HR)

Mean.HRplot2 <- ggplot(data = peakData, aes(x=CPET, y=Mean.HR)) + 
  geom_boxplot()
Mean.HRplot2

repeatMean.HR<-ezANOVA(data=peakData, dv=.(Mean.HR), wid=.(ID), within=.(CPET), detailed = TRUE, return_aov = TRUE)
repeatMean.HR
## $ANOVA
##        Effect DFn DFd          SSn        SSd            F            p p<.05
## 1 (Intercept)   1  20 793258.27373 12639.1519 1.255240e+03 1.597713e-19     *
## 2        CPET   1  20      1.04754   650.2048 3.222185e-02 8.593478e-01      
##            ges
## 1 9.835232e-01
## 2 7.881929e-05
## 
## $aov
## 
## Call:
## aov(formula = formula(aov_formula), data = data)
## 
## Grand Mean: 137.4304
## 
## Stratum 1: ID
## 
## Terms:
##                 Residuals
## Sum of Squares   12639.15
## Deg. of Freedom        20
## 
## Residual standard error: 25.13877
## 
## Stratum 2: ID:CPET
## 
## Terms:
##                     CPET Residuals
## Sum of Squares    1.0475  650.2048
## Deg. of Freedom        1        20
## 
## Residual standard error: 5.701775
## Estimated effects are balanced

RMSSD at Peak Exercise

hist(peakData$RMSSD)

hist(peakData$lnRMSSD)

RMSSDplot2 <- ggplot(data = peakData, aes(x=CPET, y=RMSSD)) + 
  geom_boxplot()
RMSSDplot2

repeatRMSSD<-ezANOVA(data=peakData, dv=.(lnRMSSD), wid=.(ID), within=.(CPET), detailed = TRUE, return_aov = TRUE)
repeatRMSSD
## $ANOVA
##        Effect DFn DFd          SSn      SSd           F            p p<.05
## 1 (Intercept)   1  20 129.80065808 6.389873 406.2699451 9.309353e-15     *
## 2        CPET   1  20   0.05291207 3.192219   0.3315065 5.711958e-01      
##          ges
## 1 0.93125339
## 2 0.00549165
## 
## $aov
## 
## Call:
## aov(formula = formula(aov_formula), data = data)
## 
## Grand Mean: 1.757979
## 
## Stratum 1: ID
## 
## Terms:
##                 Residuals
## Sum of Squares   6.389873
## Deg. of Freedom        20
## 
## Residual standard error: 0.5652377
## 
## Stratum 2: ID:CPET
## 
## Terms:
##                     CPET Residuals
## Sum of Squares  0.052912  3.192219
## Deg. of Freedom        1        20
## 
## Residual standard error: 0.3995134
## Estimated effects are balanced

lnHFP at Peak Exercise

hist(peakData$HF.power)

hist(peakData$lnHFP)

lnHFPplot2 <- ggplot(data = peakData, aes(x=CPET, y=lnHFP)) + 
  geom_boxplot()
lnHFPplot2

repeatlnHFP<-ezANOVA(data=peakData, dv=.(lnHFP), wid=.(ID), within=.(CPET), detailed = TRUE, return_aov = TRUE)
repeatlnHFP
## $ANOVA
##        Effect DFn DFd      SSn      SSd        F            p p<.05        ges
## 1 (Intercept)   1  20 34.19945 43.92833 15.57056 0.0007982691     * 0.36392031
## 2        CPET   1  20  1.01319 15.84732  1.27869 0.2715211179       0.01666738
## 
## $aov
## 
## Call:
## aov(formula = formula(aov_formula), data = data)
## 
## Grand Mean: 0.9023705
## 
## Stratum 1: ID
## 
## Terms:
##                 Residuals
## Sum of Squares   43.92833
## Deg. of Freedom        20
## 
## Residual standard error: 1.482031
## 
## Stratum 2: ID:CPET
## 
## Terms:
##                     CPET Residuals
## Sum of Squares   1.01319  15.84732
## Deg. of Freedom        1        20
## 
## Residual standard error: 0.8901494
## Estimated effects are balanced