install.packages("Rcmdr")
install
library(Rcmdr)
資料:輸入/編輯資料
統計量:統計檢定分析
繪圖:畫圖
模型:建立統計模型
機率分佈:產生連續型/離散型機率分配 樣本
資料 > 匯入資料 > 匯入文字檔
調整匯入參數
匯入成功
顯示所有可用資料集
檢視資料集
什麼是鳶尾花(iris)?
花萼?花瓣?種類?
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species | |
---|---|---|---|---|---|
Min. :4.300 | Min. :2.000 | Min. :1.000 | Min. :0.100 | setosa :50 | |
1st Qu.:5.100 | 1st Qu.:2.800 | 1st Qu.:1.600 | 1st Qu.:0.300 | versicolor:50 | |
Median :5.800 | Median :3.000 | Median :4.350 | Median :1.300 | virginica :50 | |
Mean :5.843 | Mean :3.057 | Mean :3.758 | Mean :1.199 | NA | |
3rd Qu.:6.400 | 3rd Qu.:3.300 | 3rd Qu.:5.100 | 3rd Qu.:1.800 | NA | |
Max. :7.900 | Max. :4.400 | Max. :6.900 | Max. :2.500 | NA |
## mean sd IQR 0% 25% 50% 75% 100% n
## Petal.Length 3.758000 1.7652982 3.5 1.0 1.6 4.35 5.1 6.9 150
## Sepal.Length 5.843333 0.8280661 1.3 4.3 5.1 5.80 6.4 7.9 150
##
## counts:
## Species
## setosa versicolor virginica
## 50 50 50
##
## percentages:
## Species
## setosa versicolor virginica
## 33.33 33.33 33.33
Petal.Length | Petal.Width | Sepal.Length | Sepal.Width | |
---|---|---|---|---|
Petal.Length | 1.0000000 | 0.9628654 | 0.8717538 | -0.4284401 |
Petal.Width | 0.9628654 | 1.0000000 | 0.8179411 | -0.3661259 |
Sepal.Length | 0.8717538 | 0.8179411 | 1.0000000 | -0.1175698 |
Sepal.Width | -0.4284401 | -0.3661259 | -0.1175698 | 1.0000000 |
##
## Pearson's product-moment correlation
##
## data: Petal.Length and Petal.Width
## t = 43.387, df = 148, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.9490525 0.9729853
## sample estimates:
## cor
## 0.9628654
options(digits=3)
options(digits = 7)
sqrt(2)
## [1] 1.414214
sqrt(2)*10
## [1] 14.14214
sqrt(2)*100
## [1] 141.4214
options(digits = 3)
sqrt(2)
## [1] 1.41
options(digits = 7)
str(flower)
## 'data.frame': 18 obs. of 8 variables:
## $ V1: Factor w/ 2 levels "0","1": 1 2 1 1 1 1 1 1 2 2 ...
## $ V2: Factor w/ 2 levels "0","1": 2 1 2 1 2 2 1 1 2 2 ...
## $ V3: Factor w/ 2 levels "0","1": 2 1 1 2 1 1 1 2 1 1 ...
## $ V4: Factor w/ 5 levels "1","2","3","4",..: 4 2 3 4 5 4 4 2 3 5 ...
## $ V5: Ord.factor w/ 3 levels "1"<"2"<"3": 3 1 3 2 2 3 3 2 1 2 ...
## $ V6: Ord.factor w/ 18 levels "1"<"2"<"3"<"4"<..: 15 3 1 16 2 12 13 7 4 14 ...
## $ V7: num 25 150 150 125 20 50 40 100 25 100 ...
## $ V8: num 15 50 50 50 15 40 20 15 15 60 ...
car::scatterplot(Petal.Width~Petal.Length, reg.line=FALSE, smooth=FALSE,
spread=FALSE, boxplots=FALSE, span=0.5, ellipse=FALSE, levels=c(.5, .9),
data=iris)
3D立體繪圖
dnorm(1.96, 0,1)
## [1] 0.05844094
pnorm(1.96, 0,1)
## [1] 0.9750021
qnorm(0.975, 0,1)
## [1] 1.959964
rnorm(5, 0,1)
## [1] 0.3615716 -0.2371644 0.6970924 0.9885503 -1.8198194
runif(1,0,2) # time at light
## [1] 0.8203738
runif(5,0,2) # time at 5 lights
## [1] 0.7269433 1.2516983 0.9165962 1.6600087 0.1631111
runif(5) # 5 random numbers in [0,1]
## [1] 0.47642561 0.08267099 0.49543962 0.69747714 0.40823965
已知某產品之不良率為0.1,隨機抽取10個產品檢查,至多有3個產品為不良品的機率為何?
方法1: \(P(X\leq 3)= \sum_{i=0}^{3}f(x)=\sum_{x=0}^{3}C_{x}^{10}(0.1)^x(0.9)^{10-x}\),查表可得0.9872
方法2: R
pbinom(3, 10, 0.1)
## [1] 0.9872048
## [1] 0.9937903
## [1] 1.644854
data(cars)
並且執行更換使用中的資料集為cars
檢視資料集
查看cars資料集的說明文件
names(RegModel.1) # 迴歸模型的物件內容
## [1] "coefficients" "residuals" "effects" "rank"
## [5] "fitted.values" "assign" "qr" "df.residual"
## [9] "xlevels" "call" "terms" "model"
RegModel.1$coefficients # 迴歸模型的coefficients值
## (Intercept) speed
## -17.579095 3.932409
RegModel.1$fitted.values # 迴歸模型的預測值
## 1 2 3 4 5 6 7
## -1.849460 -1.849460 9.947766 9.947766 13.880175 17.812584 21.744993
## 8 9 10 11 12 13 14
## 21.744993 21.744993 25.677401 25.677401 29.609810 29.609810 29.609810
## 15 16 17 18 19 20 21
## 29.609810 33.542219 33.542219 33.542219 33.542219 37.474628 37.474628
## 22 23 24 25 26 27 28
## 37.474628 37.474628 41.407036 41.407036 41.407036 45.339445 45.339445
## 29 30 31 32 33 34 35
## 49.271854 49.271854 49.271854 53.204263 53.204263 53.204263 53.204263
## 36 37 38 39 40 41 42
## 57.136672 57.136672 57.136672 61.069080 61.069080 61.069080 61.069080
## 43 44 45 46 47 48 49
## 61.069080 68.933898 72.866307 76.798715 76.798715 76.798715 76.798715
## 50
## 80.731124
car::Anova(RegModel.1, type="II")
Sum Sq | Df | F value | Pr(>F) | |
---|---|---|---|---|
speed | 21185.46 | 1 | 89.56711 | 0 |
Residuals | 11353.52 | 48 | NA | NA |
RcmdrPlugin.KMggplot2
套件並載入
接著安裝RcmdrPlugin.temis
,試試透過Rcmdr增益集載入
載入增益集