Chapter 4 Methods
Load ggplot2
Problem 1
ggplot(data = mpg, aes(x = hwy)) +
geom_histogram(alpha = 0.5, aes(fill = drv)) +
theme_minimal() +
labs(
subtitle = "Histogram of Highway Mile Per Gallon",
title = "Histogram",
caption = "Source: mpg"
)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Problem 2
ggplot(data = mpg, aes(x = hwy)) +
geom_histogram(alpha = 0.5, aes(fill = drv)) +
facet_grid(rows = vars(drv)) +
theme_minimal() +
labs(
subtitle = "Histogram of Highway Mile Per Gallon",
title = "Historam usig facet_grid()",
caption = "Source: mpg"
)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Problem 3
options(scipen=999)
ggplot(data = midwest, aes(x = area, y = poptotal)) +
geom_point(alpha = 0.4, aes(color = state, size = popdensity)) +
geom_smooth(se = FALSE) +
theme_classic() +
labs(
subtitle = "Area Vs Population",
y = "Population",
x = "Area",
title = "Scatter Plot",
caption = "Source: midwest"
) +
scale_x_continuous(limits = c(0, 0.1)) +
scale_y_continuous(limits = c(0, 500000))
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
Problem 4
ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.Width)) +
geom_point(alpha = 0.5, size = 6, aes(shape = Species, color = Species)) +
theme_minimal() +
labs(
subtitle = "Sepal.Length Vs Sepal.Width",
title = "Scatter Plot",
caption = "Source: iris"
)
Problem 5
ggplot(data = heightweight, aes(x = heightIn, y = weightLb)) +
geom_point(size = 3, alpha = 0.5, aes(color = sex)) +
geom_smooth(aes(color = sex, x = heightIn, y = weightLb), method = "lm", se = FALSE) +
theme_classic() +
labs(
subtitle = "Weight Vs Height",
title = "Scatter Plot",
caption = "Source: heightweight"
)
## `geom_smooth()` using formula 'y ~ x'
Problem 6
ggplot(data = mpg, aes(x = manufacturer)) +
geom_bar(width = 0.5, aes(fill = class)) +
scale_fill_brewer(palette = "Spectral") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 65, hjust = 1)) +
labs(
subtitle = "Manufacturer across Vehicle Classes",
title = "Bar Plot"
)