1 Introduction to Matrices and Linear Systems

1.1 Linear Geometry: Vectors in Space and Angle & Length

Vectors in Space

Definition: A vector is a magnitude with a direction.

\[\vec{v}=head-tail= \begin{bmatrix} b_1-a_1 \\ b_2-a_2 \end{bmatrix}\] Vectors or Scalars?

  • 60 mph (scalar)
  • 60 mph due East (vector)
  • 100 lbs (vector)
  • 5 kg (scalar)

NOTE: Vectors can exist independently of a coordinate system

Vector Operations

  • Add head-to-tail
  • Scalar multiplication stretches (scales) a vector’s length

Connection to Free Variables

Example: \[ S=\{\begin{bmatrix} 1\\2 \end{bmatrix}t|t \in\mathbb{R}\}\]

   t is free so

\[\begin{bmatrix} 1\\2 \end{bmatrix}\] can be scaled by any length. We say S generates or spans a line in \(\mathbb{R}^2.\)

Example: \[S=\{\begin{bmatrix} 1\\2\\1 \end{bmatrix} + \begin{bmatrix} -1\\1\\1 \end{bmatrix}t |t \in\mathbb{R}\}\]

   S spans a line in \(\mathbb{R}^3\) as we only have one free variable.

     

Precalculus/Calculus Way: \(2x+y+z=4 \rightarrow{x=2-\frac{1}{2}y-\frac{1}{2}z}\) \(\Rightarrow (0,0,4), (0,4,0), (2,0,0)\)

     

Linear Algebra Way: \[S=\{\begin{bmatrix} 1\\0\\0 \end{bmatrix}s + \begin{bmatrix} 0\\1\\0 \end{bmatrix}t |s, t \in\mathbb{R}\}\]

   S spans a plane in \(\mathbb{R}^3\) where all combinations of

\[\begin{bmatrix} 1\\0\\0 \end{bmatrix}\] and \[\begin{bmatrix} 0\\1\\0 \end{bmatrix}\] spans the xy-plane.

Vector Length

Definition: The length (magnitude) of a vector \(\vec{v}\in\mathbb{R}^n\) is the square root of the sum of the squares of components. Let \(\vec{v}=\langle v_1,..., v_n\rangle\), and its magnitude will be \(\lVert\vec{v}\rVert=\sqrt{v_1^2+...+v_n^2}\).

Angle between Vectors

Definition: The angle formed by two vectors is defined as the angle formed when they are joined tail-to-tail (subtended), and is denoted as \(\theta=\cos^{-1}(\frac{\vec{u}\cdot\vec{v}}{\lVert\vec{u}\rVert\lVert\vec{v}\rVert})\).

Proof:

    Let \(\vec{u}=\langle u_1, u_2\rangle\) and \(\vec{v}=\langle v_1, v_2\rangle\) be two subtended vectors
    \(\Rightarrow \lVert\vec{v}-\vec{u}\rVert^2=\lVert\vec{v}\rVert^2+\lVert\vec{u}\rVert^2-2\lVert\vec{v}\rVert\lVert\vec{u}\rVert\cos(\theta)\) by the law of cosines: \(c^2=a^2+b^2-2ab\cos(\theta)\)
    \(\Rightarrow (v_1-u_1)^2+(v_2-u_2)^2=v_1^2+v_2^2+u_1^2+u_2^2-2\lVert\vec{v}\rVert\lVert\vec{u}\rVert\cos(\theta)\)
    \(\Rightarrow v_1^2-2u_1v_1+u_1^2+v_2^2-2v_2u_2+u_2^2=v_1^2+v_2^2+u_1^2+u_2^2-2\lVert\vec{v}\rVert\lVert\vec{u}\rVert\cos(\theta)\)
    \(\Rightarrow -2(u_1v_1+u_2v_2)=-2\lVert\vec{v}\rVert\lVert\vec{u}\rVert\cos(\theta)\)
    \(\therefore \cos(\theta)=\frac{u_1v_1+u_2v_2}{\lVert\vec{v}\rVert\lVert\vec{u}\rVert}\)

Problem Set

1.2 Dot Product

Definition: The dot product, \(\vec{u}\cdot\vec{v}\), is \(\vec{u}\cdot\vec{v}=u_1v_1+u_2v_2\)

Note: if \(\vec{u}\cdot\vec{v}=0\), then \(\cos(\theta)\) which implies \(\theta=\frac{\pi}{2}\) (such vectors are orthogonal).

     

Properties of Dot Product

  1. \(\vec{u}\cdot\vec{v}=\vec{v}\cdot\vec{u}\;\;\;\;\) (dot products are commutative)

  2. \(c(\vec{u}\cdot\vec{v})=(c\vec{u})\cdot\vec{v}=\vec{u}\cdot(c\vec{v})\;\;\;\;\) (dot products are associative)

  3. \(\vec{u}\cdot(\vec{v}+\vec{w})=\vec{u}\cdot\vec{v}=\vec{u}\cdot\vec{w}\;\;\;\;\) (dot products are distributive)

  4. if \(\vec{u},\vec{v}\neq\vec{0}\) and \(\vec{u}\cdot\vec{v}=0\) then \(\vec{u}\) is orthogonal to \(\vec{v}\)

  5. \(\vec{u}\cdot\vec{u}=\lVert\vec{u}\rVert^2\;\;\;\;\)

Examples: Let \[\vec{u}=\begin{bmatrix} 3\\1 \end{bmatrix}\], \[\vec{v}=\begin{bmatrix} -1\\3 \end{bmatrix}\], \[\vec{w}=\begin{bmatrix} 2\\5 \end{bmatrix}\]

  1. \(\vec{u}\cdot\vec{w}=3(2)+1(5)=11=2(3)+5(1)=\vec{w}\cdot\vec{u}\)

  2. \(2\vec{u}\cdot\vec{w}=2(11)=4(3)+10(1)=(2\vec{u})\cdot\vec{v}=2(6)+5(2)=\vec{u}\cdot(2\vec{v})\)

  3. \(\vec{u}\cdot\vec{v}=3(-1)+1(3)=0\;\;\;\;\therefore\theta=\frac{\pi}{2}\)

  4. \(\vec{u}\cdot\vec{u}=3(3)+1(1)=3^2+1^2=\lVert\vec{u}\rVert^2\)

     

Parallel Vectors: \(\vec{u}\parallel\vec{v}\) if their directions are either same or opposite. In other words, \(\vec{u}\parallel\vec{v}\Leftrightarrow c\vec{u}=\vec{v}\) for some \(c\in\mathbb{R}\)

Example: Let \(\vec{u}=\langle2,2,2\rangle\) and \(\vec{v}=\langle-1,-1,-1\rangle\), then \(vec{u}\parallel\vec{v}\) because \(\vec{u}=-2\vec{v}\).

   

Theorem [Cauchy-Schwarz Inequality]: For any \(\vec{u},\vec{v}\in\mathbb{R}^n\), \(\lvert\vec{u}\cdot\vec{v}\rvert\leq\lVert\vec{u}\rVert\lVert\vec{v}\rVert\).

Proof:

    Start with \(\cos(\theta)=\frac{\vec{u}\cdot\vec{v}}{\lVert\vec{v}\rVert\lVert\vec{u}\rVert}\;\;\Rightarrow\;\;\vec{u}\cdot\vec{v}=\lVert\vec{v}\rVert\lVert\vec{u}\rVert\cos({\theta})\)

 

    Since \(\max\{\cos=\theta\}=1\) and \(\min\{\cos=\theta\}=-1\), we have \(-\lVert\vec{u}\rVert\lVert\vec{v}\rVert\leq\lVert\vec{u}\rVert\lVert\vec{v}\rVert\cos(\theta)\leq\lVert\vec{u}\rVert\lVert\vec{v}\rVert\).
    \(\Rightarrow \lvert\lVert\vec{u}\rVert\lVert\vec{v}\rVert\cos(\theta)\rvert\leq\lVert\vec{u}\rVert\lVert\vec{v}\rVert\)
    \(\therefore\lvert\vec{u}\cdot\vec{v}\rvert\leq\lVert\vec{u}\rVert\lVert\vec{v}\rVert\)

   

Theorem [Triangle Inequality]: For any \(\vec{u},\vec{v}\in\mathbb{R}^n\), \(\lVert\vec{u}+\vec{v}\rVert\leq\lVert\vec{u}\rVert+\lVert\vec{v}\rVert\).

Proof:

    \((\lVert\vec{u}\rVert+\lVert\vec{v}\rVert)^2\)
    \(=\lVert\vec{u}\rVert^2+2\lVert\vec{u}\rVert\lVert\vec{v}\rVert+\lVert\vec{v}\rVert^2\)
    \(=\vec{u}\cdot\vec{u}+2\lVert\vec{u}\rVert\lVert\vec{v}\rVert+\vec{v}\cdot\vec{v}\)

 

    \(\lVert\vec{u}+\vec{v}\rVert^2=(\vec{u}+\vec{v})\cdot(\vec{u}+\vec{v})\)
    \(=\vec{u}\cdot\vec{u}+\vec{u}\cdot\vec{v}+\vec{v}\cdot\vec{u}+\vec{v}\cdot\vec{v}\)
    \(=\vec{u}\cdot\vec{u}+2(\vec{u}\cdot\vec{v})+\vec{v}\cdot\vec{v}\)
    \(=\vec{u}\cdot\vec{u}+2\lVert\vec{u}\rVert\lVert\vec{v}\rVert\cos(\theta)+\vec{v}\cdot\vec{v}\)
    \(\leq\vec{u}\cdot\vec{u}+2\lVert\vec{u}\rVert\lVert\vec{v}\rVert+\vec{v}\cdot\vec{v}=(\lVert\vec{u}\rVert+\lVert\vec{v}\rVert)^2\)
    Thus, \(\lVert\vec{u}+\vec{v}\rVert^2\leq(\lVert\vec{u}\rVert+\lVert\vec{v}\rVert)^2\)
    \(\lVert\vec{u}+\vec{v}\rVert\leq\lVert\vec{u}\rVert+\lVert\vec{v}\rVert\) by square root propoerty of inequality

Problem Set

1.3 Solving Linear Equations

Gauss’s Method

Definition: A linear combination of \(x_1, ... x_n\) is of the form \(a_1{x_1} + ... + {a_n{x_n}}\) where \(a_i\) are coefficients.

An n-tuple (\(S_1, ... , S_n\)) is solution of or satisfies a system of equations:

\[\begin{bmatrix} a_{1,1}x_1 + & \dots & + a_{1, n}x_n & | &d_1 \\ \vdots & & \vdots \\ a_{m,1}x_1 + & \dots & + a_{m, n}x_n & | &d_m \end{bmatrix}\]

Example: \(S = {\{sinx, cosx\}}\)

\(4sinx - 3cosx\) is a linear combination of \(sinx, cosx\)

\(3(sinx)^2 - 3cos\sqrt{x}\) is NOT a linear combination of \(sinx, cosx\)

Gauss’ Method

Elementary row operations are:

  1. Swapping Equations

  2. Multiplication by nonzero constant \(\leftarrow\) (Re-scaling)

  3. Replace with linear combination of existing equations \(\leftarrow\) (Row Combo)

Theorem: Performing elementary row operations on a system of equations does not change the solution set.

General = Particular + Homogeneous

Theorem: Any linear system has general solution of the form:

\(\begin{matrix} \{\vec{p} + c_1\vec{{b_1}}+...+c_1\vec{{b_k}}& c_1,...,c_k \in\mathbb{R}\}\\ \end{matrix}\)

where k = Number of free variables, \(\vec{\beta_1}, ... , \vec{\beta_k}\) are the vectors associated with free variables, and \(\vec{p}\) is a particular solution (vector of constants).

Definition: A linear system is homogeneous if all equations equal to 0.

  1. Always guaranteed to have at least one solution. \((x_1 = x_2 = ... = 0)\)

  2. For homogeneous systems \(\vec{p}=\vec{0}\)

Theorem: Any linear system has general solution of the form: \(\begin{matrix} \{\vec{p} + \vec{h}\} \end{matrix}\)

Where \(\vec{p}\) is particular solution, \(\vec{h}\) satisfies associated homogeneous system. This theorem suggest that \(\vec{h} = c_1{\vec{\beta_1}} + .. + c_1\vec{{\beta_k}}i\) in other words, the free variable terms satisfy associated the homogeneous system.

Theorem: Any system of linear equations must have either

  1. Exactly 1 solution

  2. No solutions

  3. Infinitely many solutions

Definitions:

  1. A square matrix is a matrix where n = m.

  2. A square matrix is non-singular if it is the matrix of coefficients of a homogeneous system with a unique solution.

  3. A square matrix is singular if it is not non-singular.

Example:

A = \(\begin{bmatrix} 2 & 1\\ -1 & 3\\ \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 1\\ 0 & 7\\ \end{bmatrix}\)

Associated System: \(2x+y=0\)

\(-x+3y=0\)

\(\therefore y=x=0\)

\(\therefore\) non singular

Example:

B = \(\begin{bmatrix} 2 & 2\\ 1 & 1 \\ \end{bmatrix}\) \(\Rightarrow\) \(\begin{bmatrix} 2 & 2\\ 0 & 0\\ \end{bmatrix}\) I - II

Problem Set

1.4 Row Echelon Form & Reduced Row Echelon Form

Definition: Occurs when leading variable of an equation is to the right of the row above it AND when all rows of zeros are at the bottom.

Example:

\[x-y=0\]

\[2x+2y+z+2w = 4\]

\[y+w = 0\] \[2z+w = 5\]

-2I + II, replace II

II swap III

\[x-y =0\] \[y+w = 0\] \[z+2w = 4\] \[2z+w = 5\]

-2III + IV, replace IV

\[x-y =0\] \[y+w = 0\] \[z+2w = 4\] \[-3w = -3\]

w=1

z=2

y=-1

x=-1

Solution: (-1, -1, 2, 1)

1.4.1 Reduced Row Echelon Form

*Gauss-Jordan reduction is an extension of Gauss’ method.

Definition: A matrix is in reduced row echelon form (RREF) if the matrix is in REF and:

  1. All nonzero leading entries are 1.

  2. Any rows containing all 0’s are below all nonzero rows.

  3. Where possible, any non zero entry below a leading variable (column) is 0.

Reminders

Definition: (i) Elementary row opperations are: 1. Swapping, 2. Row Scaling, 3. Row Replacement (linear combination of rows)

Theorem: (ii) Elementary row operations are reversible

Definition: (iii) Two matrices are row equivalent if one can be reduced (changed to) the other by a sequence of elementary row operations.

Pivot Positions: location of a leading entry in RREF matrix.

Example: Compute RREF(A) if A = \(\begin{bmatrix} 2 & 6 & 1 & 2 & 5 \\ 0 & 3 & 1 & 4 & 1 \\ 0 & 3 & 1 & 2 & 5 \end{bmatrix}\)

-II + III \(\Rightarrow\) \(\begin{bmatrix} 2 & 6 & 1 & 2 & | & 5 \\ 0 & 3 & 1 & 4 & | & 1 \\ 0 & 0 & 0 & -2 & | & 4 \end{bmatrix}\)

(1/2)I + (-1/2)III, (1/3)II \(\Rightarrow\) \(\begin{bmatrix} 1 & 3 & 1/2 & 1& | & 5/2 \\ 0 & 3 & 1 & 4 & | & 1/3 \\ 0 & 0 & 0 & -2 & | & 4 \end{bmatrix}\)

II - (4/3)III, I - III \(\Rightarrow\) \(\begin{bmatrix} 1 & 3 & 1/2 & 0& | & 9/2 \\ 0 & 1 & 1/3 & 0 & | & 3 \\ 0 & 0 & 0 & 1 & | & -2 \end{bmatrix}\)

(-3)II + I \(\Rightarrow\) \(\begin{bmatrix} 1 & 0 & -1/2 & 0& | & -9/2 \\ 0 & 1 & 1/2 & 0 & | & 3 \\ 0 & 0 & 0 & 1 & | & -2 \end{bmatrix}\) = RREF A

Columns 1,2 & 4 are pivot columns and \(a_{11}\), \(a_{22}\), \(a_{44}\) are the pivots.

\(\begin{bmatrix} 2 & 6 & 1 & 2 & | & 5 \\ 0 & 3 & 1 & 4 & | & 1 \\ 0 & 0 & 0 & -2 & | & 4 \end{bmatrix}\) is row equivalent to \(\begin{bmatrix} 1 & 0 & -1/2 & 0& | & -9/2 \\ 0 & 1 & 1/2 & 0 & | & 3 \\ 0 & 0 & 0 & 1 & | & -2 \end{bmatrix}\)

Corresponding system of equations:

\(2x+6y+z+w = 5 \Rightarrow x-(1/2)z = (-9/2)\)

\(3y+z+4w = 1 \Rightarrow y+(1/3)z = 3\)

\(3y+z+2w = 5 \Rightarrow w = 2\)

Z is a free variable.

S = \(\{\begin{bmatrix} (-9/2)\\ 3\\ 0\\ -2 \end{bmatrix}\) + \(\begin{bmatrix} (1/2)\\ (1/3)\\ 1\\ 0 \end{bmatrix}\}\) | z \(\in\mathbb{R}\)}

Important Note: The RREF of a matrix is unique. There’s only 1 RREF of a matrix.

Equivalence Relations

Definition: A relation ~ between a set of elements is an equivalence relation if the relation is reflexive, symmetric, and transitive.

Example 1: Equality:

  1. A = A \(\Rightarrow\) Reflexive

  2. if A = B then B = A \(\Rightarrow\) Symmetric

  3. if A = B and B = C then A = C \(\Rightarrow\) Transitive

Example 2: Is same birthday as, an equivalence relation?

Reflexive, Symmetric, and Transitive work.

Example 3: Is friends with an equivalence relation?

No, any of the conditions could fail.

Example 4: S = \(\mathbb{Z}\) relation: R = { x ~ y | x and y same parity}

Reflexive: if x is odd then it is odd (same for even) \(\therefore\) x ~ x

Symmetric: if x ~ y then y ~ x

Transitive: if x ~ y and y ~ z then x ~ z (all are odd)

Example 5: Let S be the set of nxm matrices

R = {A ~ B | A can be reduced to B by elementary row opperations}

Linear Combination Lemma

Main Idea: Every matrix is row equivalent to exactly 1 RREF matrix.

Supporting Theorems

Linear Combination Lemma:

a linear combination of linear combination is a linear combination.

 

Proof: Let \(S = \{x_1,...,x_n\}\). Consider the following linear combinations of \(S\):

\(c_{11}x_{1} + ...+c_{1n}x_{n}\)

By definition, a linear combination of these combinations is:

\(d_{1}(c_{11}x_1+...+c_{1n}x_n) +...+d_m(c_{m1}x_1+...+c_{mn}x_n)\) \(= d_1c_{11}x_1+...+d_1c_{1n}x_n +...+d_mc_{m1}x_1+...+d_mc_{mn}x_n\)

which is a linear combination of \(x_1,...,x_n\)

In a REF matrix, no nonzero row is a liner combination of the other rows:

Example: \(B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 5 \end{bmatrix}\) is a REF matrix.

\(c_1(II) + c_2(III) \neq (I)\) since \(b_21 = 0 = b_31\)

\(c_1(I) + c_2(II) \neq (III)\) since \(c_1(1) = c_1 \ neq 0\), but \(b_13 = 0\)

\(c_1(I) + c_2(III) \neq (II)\) since \(c_1(1) = c_1 \neq 0\), but \(b_12 = 0\)

1.5 Determinants and Inverse Matrices

1.5.1 Determinants

The Determinant as a Function

The determinant of a matrix is a function of the form \(f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}\)

Example: \(\mathrm{det}(\begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix} = 0\)

 

Background of Understanding the function, \(\mathrm{det}()\)

Permutation: Given \(\{1, 2, ..., n\}\) all arrangements without omissions or repetitions.

 

Example: \(\{1, 2, 3\} = S\) The permutations of \(S\) are

 

Inversion: Any time when a larger integer proceeds a smaller integer in a permutation.

 

Example: The permutation \((6, 1, 3, 4, 5, 2)\) has \(5+0+1+1+1=8\) inversions.

 

Odd or Even Permutation: Determine whether the permutation is odd or even based on the number of inversions.

 

Example: perumation \((6, 1, 3, 4, 5, 2)\) is even because there are 8 inversions.

Elementary Prodcuts: Consider permutations of \(n\) elements where elements do NOT share some row or columns as products.

 

Let \(A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a{33} \end{bmatrix}\)

 

 

Definition of Determinant Function

Let \(A\) be a square matrix. The determinant of \(A\) denoted \(\mathrm{det}(A)\), is the sum of all signed elementary products.

Example: \(\mathrm{det}(\begin{bmatrix} 4 & -1 \\ 3 & 2 \end{bmatrix}) = 8 - (-3) = 11 = a_{11}a_{12} - a_{12}a_{21}\)

Use the left expressions to prove the formula on the right

 

Example: \(\mathrm{det}(\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}\)

Trick: Remember \(3\times3\) determinant via sum of signed elementary products. (NOTE only valid for \(3\times3\) matrices)

Evaluating Determinants by Row Reduction

Theorem 1: If \(A\) is a square matrix containing a row of zeros then \(\mathrm{det}(A) = 0\)

This is so becuase each signed element contains one term from each row, each product is zero.

Theorem 2: If \(A\) is \(n \times n\) triangular matrix (upper, lower, or diagonal) then \(\mathrm{det}(A)= a_{11} \cdot a_{22} \cdot...\cdot a_{nn}\) - which is the product of diagonal elements

This is so since the signed element products are all zero except those along the diagonal.

Theorem 3: Let \(A\) be an \(n\times n\) matrix

  1. Row scale scales \(\mathrm{det}(A)\): If \(A'\) is a matrix contstructed by multiplying (a connection to row operations) one row of \(A\) by \(c \in \mathbb{R}\) then \(\mathrm{det}(A') = c\mathrm{det}(A)\)
  2. Row swap swaps sign of \(\mathrm{det}(A)\): If \(A'\) is a matrix constructed by interchanging 2 rows of \(A\) then \(\mathrm{det}(A') = -\mathrm{det}(A)\)
  3. Row replace with linear combination doesn’t change \(\mathrm{det}(A)\): If \(A'\) is a matrix constructed by replacing a row of \(A\) with a linear combination of rows then \(\mathrm{det}(A') = \mathrm{det}(A)\)

 

Properties of the Determinant Function

Theorem 1: If \(A\) is a square matrix then \(\mathrm{det}(A) = \mathrm{det}(A^T)\)

 

Theorem 2: \(\mathrm{det}(kA) = k^n\mathrm{det}(A)\) where \(A\) is \(n\times n\) and \(k \in \mathbb{R}\)

 

Theorem 3: \(A\) is invertible if and only if \(\mathrm{det}{A} \neq 0\)

 

NOTE: \(\mathrm{det}(A + B) \neq \mathrm{det}(A) + \mathrm{det}(B)\)

 

 

1.5.2 Cofactor Expansion

Definition: Cofactor Expansion is a computational method to evaluate determinants.

Let \(A\) be a square matrix. The minor of \(a_{ij}\), dneoted by \(M_{ij}\), is the determinant of the submatrix that remains after deleting the \(ith\) and \(jth\) row from \(A\). The number \((-1)^{i+j}M_{ij}\) is called the cofactor of \(a_{ij}\)

 

Cofactor Expansion Method

Recall: \(\mathrm{det}(A) = \mathrm{det}(\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}\)

Which we can manipulate to get the following:

\(= a_{11}(a_{22}a_{33} - a_{23}a_{32}) + a_{21}(a_{13}a_{32} - a_{12}a_{33}) + a_{31}(a_{12}a_{23} - a_{13}a_{22})\)

 

\(= a_{11}C_{11} + a_{21}C_{21} + a_{31}C_{31}\) - this is cofactor expansion along the 1st column

NOTE: we can expand along any column OR row

 

Example: \(A = \begin{bmatrix} 3 & 1 & 0 \\ -2 & -4 & 3 \\ 5 & 4 & -2 \end{bmatrix}\)

\(\therefore \mathrm{det}(A) = 3\begin{vmatrix}-4 & 3 \\ 4 & -2 \end{vmatrix} - (-2)\begin{vmatrix} 1 & 0 \\ 4 & -2 \end{vmatrix} + 5\begin{vmatrix} 1 & 0 \\ -4 & 3 \end{vmatrix}\)

\(= 3(8 - 12) + 2(-2 - 0) + 5(3-0)\)

\(=3(-4) - 4 + 15\)

\(=-12 -4 + 15 = -1\)

Try expanding along a diffefent row or column

1.5.3 Inverses of Matrices

Definition:

  1. An identity matrix, denoted \(I_n\), is an \(n\times n\) matrix with the value \(1\) in every main diagonal entry and zeros everywhere else.

Examples:

\(I_2 = \begin{bmatrix}1 & 0 \\ 0 & 1 \end{bmatrix}\)

\(I_3 = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\)

 

Unique Property - identity matrix acts like the number one: \(AI = IA = A\)

  1. The inverse of an \(n \times n\) matrix, denoted \(A^{-1}\), is a matrix so that \(AA^{-1} = I_n\)

  2. A matrix with an inverse is called invertible

Example:

\(A = \begin{bmatrix}1 & 2 \\ 1 & 3 \end{bmatrix}, M = \begin{bmatrix}3 & -2 \\ -1 & 1 \end{bmatrix}\)

\(AM = \begin{bmatrix}1 & 2 \\ 1 & 3 \end{bmatrix}\begin{bmatrix}3 & -2 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix}1 & 0 \\ 0 & 1 \end{bmatrix}\)

\(\therefore M = A^{-1}\)

 

 

Theorem: If \(B\) and \(C\) are inverses of \(A\) then \(B=C\).

Proof: \(BA = I\)

\((BA)C = IC\)

\((BA)C = C\)

\(B(AC) = C\)

\(BI = C\)

\(B = C\)

 

 

Theorem: If \(A\) and \(B\) are invertible \(n\times n\) matrices then

  1. \(AB\) is invertible

  2. \((AB)^{-1} = B^{-1}A^{-1}\)

Proof:

\((AB)(B^{-1}A^{-1})\)

\(=A(BB^{-1})A^{-1}\)

\(=AIA^{-1}\)

\(=AA^{-1}\)

\(=I \therefore (AB)^{-1} = B^{-1}A^{-1}\)

 

 

Theorem: If \(A\) is invertible then

  1. \((A^{-1})^{-1} = A\)

  2. \((A^n)^{-1} = (A^{-1})^n\) for \(n \in \mathbb{N}\)

  3. \((kA)^{-1} = \frac{1}{k}A^{-1}\) for \(k \neq 0\)

Proof:

\((kA)(\frac{1}{k} A^{-1}) = \frac{1}{k} (kA) A^{-1}\)

\(= \frac{1 k}{k}A A^{-1}\)

\(= 1I\)

\(= I\)

\(\therefore (kA)^{-1} = \frac{1}{k}A^{-1}\)

 

 

How to Compute the Inverse of A Matrix

Recall: Elementary row operations are reversible.

 

Procedure for Computing the Inverse

  1. Adjoin \(A\) and \(I\)

  2. Row reduce \(A\) to RREF; apply same operations

  3. The resultant matrix of the righthand side is \(A^{-1}\)

 

Example: Compute the inverse of \(A = \begin{bmatrix}1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8\end{bmatrix}\)

\([A | I]\)

\(= \begin{bmatrix}1 & 2 & 3 & | & 1 & 0 & 0 \\ 2 & 5 & 3 & | & 0 & 1 & 0\\ 1 & 0 & 8 & | & 0 & 0 & 1\end{bmatrix}\)

 

\(-2I + III\) and \(-I + III \rightarrow\)

 

\(\begin{bmatrix}1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & -3 & | & -2 & 1 & 0\\ 0 & -2 & 5 & | & -1 & 0 & 1\end{bmatrix}\)

 

\(2II + III \rightarrow\)

 

\(...A^{-1} = \begin{bmatrix}-40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1\end{bmatrix}\)

 

Comment: If row operations result in a row of zeros then \(A\) is noninvertible.

1.6 Labs

Geology Lab

1.7 Coding Labs

Linear Geometry and Matrices Lab (1.1-1.2: Linear Geometry and Matrix Definitions and Operations)

Linear Systems Lab (1.3 & 1.4: Solving Linear Systems and REF & RREF)

Determinants, Cofactor Expansion, and Inverse Matrices Lab (1.5: Determinants & Invertibility)

1.8 Projects

Truss Project (1.1-1.3: Vector Spaces Applications)

Encryption Project (1.4-1.5: Matrix Applications)