Chapter 11 Assign Gene Signature

library(Seurat)
library(tidyverse)
library(magrittr)
library(data.table)

11.1 Description

Given a gene list, calculate gene signature by averaging gene expresion

11.2 Load seurat object

combined <- get(load('data/Demo_CombinedSeurat_SCT_Preprocess.RData'))
Idents(combined) <- "cluster"

11.3 Load gene lists, here using the layer-enriched genes as examples

f.ls <- list.files(
  "data/GeneList/",
  pattern = "FDR001.upDEG.csv$",
  full.names = T,
  recursive = T
)
names(f.ls) <-
  f.ls %>% map(basename) %>% map( ~ str_remove(.x, "vs.*"))

layer.ls <- f.ls %>% map( ~ {
  df <- fread(.x)
  gn <- df$id[!is.na(df$id)]
  gn <- gn[which(gn %in% rownames(combined))]
  return(gn)
})

11.4 Calcuate gene signature per gene list

mean.ls <- layer.ls %>% map_dfc(~ colMeans(x = as.matrix(combined@assays$SCT[.x, ]), na.rm = TRUE))
rownames(mean.ls) <- rownames(combined@meta.data)
combined <- AddMetaData(combined, mean.ls, col.name = colnames(mean.ls))

11.5 Explore the gene signature by FeaturePlot and VlnPlot

names(layer.ls) %>% map(~ FeaturePlot(object = combined, features = .x, pt.size = 0.001))
## [[1]]

## 
## [[2]]

## 
## [[3]]

## 
## [[4]]

## 
## [[5]]

## 
## [[6]]

## 
## [[7]]

## 
## [[8]]

names(layer.ls) %>% map(~ {
  VlnPlot(object = combined, features = .x, pt.size = 0) + NoLegend()
  })
## [[1]]

## 
## [[2]]

## 
## [[3]]

## 
## [[4]]

## 
## [[5]]

## 
## [[6]]

## 
## [[7]]

## 
## [[8]]