6 Applications

Questions

  • How are PC scores of wCV related to SQI?
  • Which genes highly contribute to PC1?
  • Is there any trend of wCV according to gene and sample properties?
  • Descriptive statistics by SQI? Two groups are significantly different?

6.1 Principal component analysis

# Convert NA to 0
wCV.mat2 <- wCV.mat
wCV.mat2[is.na(wCV.mat2)] <- 0

# Remove constant rows (zero variance rows)
wCV.mat2 <- wCV.mat2[apply(wCV.mat2, 1, var)!=0, ]

# Perform PCA
pca_result <- prcomp(t(wCV.mat2), scale=TRUE)

# Contributions of each gene to the PC1
pc1_contributions <- abs(pca_result$rotation[, 1])
top_genes <- order(pc1_contributions, decreasing=TRUE)

6.2 window CV heatmap

6.3 Table

table1(~ AUC + PD + RINs + RatioIntron + robustCV | SQI, 
       data=SplAnnomat,
       render.continuous=function(x) {sprintf("%.2f [%.2f, %.2f]", median(x, na.rm=TRUE), min(x, na.rm=TRUE), max(x, na.rm=TRUE))}
       )
Bad
(N=19)
Good
(N=152)
Overall
(N=171)
AUC 0.82 [0.67, 1.01] 0.47 [0.42, 0.59] 0.48 [0.42, 1.01]
PD 6.58 [3.74, 10.34] -0.12 [-2.25, 2.13] 0.00 [-2.25, 10.34]
RINs 2.80 [1.10, 4.60] 5.70 [1.30, 9.20] 5.30 [1.10, 9.20]
Missing 1 (5.3%) 3 (2.0%) 4 (2.3%)
RatioIntron 1.33 [0.57, 2.80] 1.93 [0.46, 4.07] 1.85 [0.46, 4.07]
robustCV 0.56 [0.48, 0.60] 0.36 [0.29, 0.44] 0.36 [0.29, 0.60]