Relatives of Brownian Motion

  1. Suppose that the price (dollars) of a stock can be reasonably modeled as a Geometric Brownian motion with drift μ=0.05 per year and scale parameter σ=0.20 per year. Compute the probability that the stock price 2 years from now is 10% greater than the stock price 1 year from now.

  2. Let U(t) represent the difference (in percentage points) between an interest rate and some benchmark. (For example, U is 0 when the interest rate is equal to the benchmark, U is -1 if the interest rate is 1 percentage point below the benchmark, etc.) Assume that U(t) follows an Ornstein-Uhlenbeck process. If the interest rate is currently 3 percentage points below the benchmark, find the probability that the interest rate is more than 1.5 percentage point below the benchmark 2 units of time from now.